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form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:
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Various levels of co-creation. [Haase and Pokutta, 2026]

• Digital Pen: basically like autocorrect, bibtex lookup, etc. “2000s”
• AI Task Specialist: ChatGPT, Claude, Gemini, etc. 2022 - 2025
• AI Assistant: Agents with integrated tools, verification, etc. 2025 - present
• AI Co-creator: Fully integrated, autonomous, co-creator 2027(??)

Capabilities are impressive but unstable:
• SOTA models achieve post-PhD level scores on benchmarks, yet in day-to-day use

make trivial (logical) errors.
• No hard verification of results and randomness across runs.
• Prompting and scaffolding are still a challenge.
• Availability of tools for verification etc crucial.
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What is this talk about?
Mathematics with computers is not new

Various high-profile examples from the past.
• Four Color Theorem: massive computer-based case checking

[Appel and Haken, 1977, Robertson et al., 1997]

• Kepler Conjecture / Hales’ Theorem: extensive computer verification
[Hales et al., 2017]

• Classification of Finite Simple Groups: Formal verification with Lean and Coq
• Boolean Pythagorean Triples Problem: A spectacular 200TB SAT-solver proof.

[Heule et al., 2016]

Crucial role in computational mathematics / scientific computing
• Finite Elements
• Numerical Simulations
• Optimization
• Engineering
• ...
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The Hadwiger-Nelson Problem

joint work with: Aldo Kiem, Konrad Mundinger,
Christoph Spiegel, Max Zimmer

ICML 2025 (oral)
https://arxiv.org/abs/2404.05509

Partially supported by ExC MATH+ Project EF-LiOpt-3

Agent AI in Mathematics

[Mundinger et al., 2025]
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The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdős, Harary, Tutte, ...)
What is the smallest number of colors sufficient for coloring the plane in such a way that no two
points of the same color are at a unit distance apart?

Infinite graph with vertex set E2 and edges {x, y} for any x, y ∈ E2 with ∥x − y∥ = 1
⇒ chromatic number of the plane 𝜒(E2)

Theorem
Assuming Axiom of Choice (AoC): [Bruĳn and Erdos, 1951]

Any graph is k-colorable iff every finite subgraph of it is k-colorable.

This problem has a long and complicated history... over 14 pages in [Soifer, 2024]
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The Hadwiger-Nelson Problem

p. 24 in [Soifer, 2024]
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Lower bounds on 𝜒(E2)
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition
A graph G = (V, E) is a unit distance graph if there exists an embedding f : V → E2 of its
vertices in the plane s.t. ∥f (u) − f (v)∥ = 1 if and only {u, v} ∈ E.

A triangle gives a lower bound of 3.
The Moser spindle gives a lower bound of 4. [Moser and Moser, 1961]

Theorem
There is a unit distance graph on 20 425 vertices with chromatic number 5. [De Grey, 2018]

Simpler constructions with...
1. 1581 vertices for detail see [De Grey, 2018]

2. 627 vertices [Exoo and Ismailescu, 2020]

3. 553 vertices (as part of Polymath16) Marĳn Heule, for details see [Mixon, 2021]

4. 509 vertices (as part of Polymath16) Jaan Parts, for details see [Mixon, 2021]
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Theorem
There is a unit distance graph on 20 425 vertices with chromatic number 5. [De Grey, 2018]

Simpler constructions with...
1. 1581 vertices for detail see [De Grey, 2018]

2. 627 vertices [Exoo and Ismailescu, 2020]

3. 553 vertices (as part of Polymath16) Marĳn Heule, for details see [Mixon, 2021]

4. 509 vertices (as part of Polymath16) Jaan Parts, for details see [Mixon, 2021]
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A copy of three pentagons, one triangle, three octagons and two hexagons together form the
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of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.
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are at risk making this construction invalid are given be the following set of constraints:
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Upper bounds on 𝜒(E2)
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3

Upper bounds through colorings
The Hadwiger-Nelson Problem

Explicit colorings g : E2 → [c] := {1, . . . , c}, usually derived through tesselations using
simple polytopal shapes, give

5 ≤ 𝜒(E2) ≤ ...

Question. Can we use computers to find admissible colorings g : E2 → [c], i.e.,{
x ∈ E2 | ∃y ∈ B1(x) : g(x) = g(y)

}
= ∅?

... attempts, e.g., via discretization and SAT solvers...

Idea. Use a parameterized and easily differentiable family g𝜃 : E2 → Δc and find

arg min
𝜃

E
[∫

B1(x)
g𝜃(x) · g𝜃(y) dy

���� x ∈ E2
]
.

Key Point. Approach is continuous in nature.
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New upper bounds via
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One second recap: Neural Networks
Neural Networks as Colorings

Here. Simply a parameterized continuous function to model the coloring.

input

Blackbox

heavily parameterized
easily differentiable

universal approximator

output

Theorem (Universal Approximation Theorem)
Feedforward neural networks with certain activation functions are dense (w.r.t. compact
convergence) in the space of continuous functions.
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3

Can we improve the upper bound?
Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g𝜃 to minimize

L(𝜃) =
∫
[−b,b]×[−b,b]

∫
B1(x)

g𝜃(x) · g𝜃(y) dy dx

for some reasonable b ∈ R?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point x(i) ∈ [−b, b] × [−b, b] and
y(i) ∈ B1(x) for i = 1, . . . ,m and use that

∇𝜃L(𝜃) ≈ ∇̂𝜃L(𝜃) � 1
m

m∑
i=1

∇𝜃 g𝜃(x(i)) · g𝜃(y(i)),

where ∇𝜃 g𝜃(x(i)) · g𝜃(y(i)) is easily computed through backpropagation, to adjust the
parameters 𝜃 with an appropriate step size 𝛼k through

𝜃k+1 = 𝜃k − 𝛼k ∇̂𝜃L(𝜃).

⇒ Very flexible approach “Deep Annealing”
(also: tropicalization of loss function aka softmax... “minimize the max”)
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Can we improve the upper bound?
Neural Networks as Colorings
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3

Unfortunately this coloring was already known...
Neural Networks as Colorings

Theorem
99.985% of the plane can be colored with 6 colors such that no two points of the same color are a
unit distance apart. [Pritikin, 1998, Parts, 2020]

Corollary
Any unit distance graph with chromatic number 7 must have at least 6 992 vertices.

⇒ While coloring was known already maybe on the right track?
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Off-diagonal variant
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3

Going off-diagonal
Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c-coloring of the plane has type (d1 , . . . , dc)
if color i does not contain any points at distance di.

Problem (Soifer in Nash and Rassias’ Open Problems in Mathematics)
Determine the continuum of six-colorings X6 = {d | (1, 1, 1, 1, 1, d) can be realized}.

[Soifer, 1994a, Nash and Rassias, 2016]

Status. Six-colorings exist for:
1. d = 1/

√
5 [Soifer, 1992]

2. d =
√

2 − 1 [Hoffman and Soifer, 1993, 1996]

3. Part of family with 0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447 [Hoffman and Soifer, 1996, Soifer, 1994b, 2009]

Deep Annealing approach provides two new colorings leading to...

Theorem
X6 contains the closed interval [0.354, 0.657]. [Mundinger et al., 2024, 2025]
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First coloring: 0.354 ≤ d ≤ 0.553
Neural Networks as Colorings

Figure 1: Building block of first coloring for d = 0.354, 0.45, and 0.553.

form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3
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Second coloring: 0.418 ≤ d ≤ 0.657
Neural Networks as Colorings

s4  d (2.1)

s5 � d (2.2)

w1  1 (2.3)

w2  1 (2.4)

w3  1 (2.5)

h1 + h3 + d � 1 (2.6)

Here h1 is the height of the pentagon, h3 the height of the triangle, s4 is the side length of

the triangle, s5 the length of the longest side of the octagon, w1 and w2 two di↵erent widths of

octagon, and w3 the width of the hexagon. Note that a more detailed description of variables

alongside the corresponding shape is given in the appendix. Figure 4 in the appendix also gives

a visual representation of the six cases.

Unfortunately we were unable to derive a closed form expression for the range of d for

which a valid choice of ↵1 can be found. However, it is easy to numerically verify that for

d 2 [0.354, 0.553] such a choice can be made. Furthermore, by linearly interpolating between

the two extreme points, that is by choosing ↵1 = 113.7+(d�0.354) 14.11/0.299, we can remove

the additional degree of freedom in the definition of the pentagon. Finally, we note that there

is always an appropriate choice for the color on the boundaries between the shapes.

Figure 3: Illustration of the second coloring with circles at unit distance (dotted), and distance

dmax (dashed), and distance distance dmin (dash-dotted) highlighted at six critical points.

4
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Figure 1: Building block of first coloring for d = 0.354, 0.45, and 0.553.

form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Just numerics...?
Neural Networks as Colorings

Voronoi cell filtering...

⇒ Exact constructions for both colorings.
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3

First coloring: exact components
Neural Networks as Colorings
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Second coloring: exact components
Neural Networks as Colorings
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3

Is this optimal?
Neural Networks as Colorings

Numerical results showing the percentage of points with some conflict for a given
forbidden distance d in the sixth color found over several runs.
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121 Patchworked Curves of Degree Seven

joint work with: Zoe Geiselmann, Michael Joswig, Lars Kastner,
Konrad Mundinger, Christoph Spiegel,

Marcel Wack, and Max Zimmer

Preprint (Sneak Peak)
https://arxiv.org/abs/2602.06888
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Neural Generative Models for Algebraic Curves

[Geiselmann et al., 2026]
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interpolating between two extremal values (though other options can also be valid depending
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Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Hilbert’s 16th Problem
Topological Characterization of Curves

In 1900, Hilbert formulated his famous 16th problem:

Provide a topological classification of real plane algebraic curves of arbitrary degree d.

[Hilbert, 1900]

Example. For degree d = 6, the equation

z2 = −
[(

x2

a2
1
+ y2

b2
1
− 1

) (
x2

a2
2
+ y2

b2
2
− 1

) (
x2

a2
3
+ y2

b2
3
− 1

)]
defines a real algebraic curve in the projective plane.
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Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Current State-of-the-Art
Topological Characterization of Curves

1. d = 6, 7: resolved in 1970s and 1980s [Rohlin, 1978, Nikulin, 1980, Viro, 1984, Gudkov, 1974]

2. d = 8: mostly but not entirely resolved [Orevkov, 2002]

3. d = 9: mostly fragmented [Orevkov, 2010]

Required. (a) Establishing existence of curves of certain types and (b) Ruling out
non-types.

Viro’s Patchworking method allows for explicit construction of curves → T-curves.
[Viro, 1986]

Itenberg and Viro. “All real schemes of curves of degree < 6 and almost all real schemes of
curves of degree 7 have been realized by the patchwork construction described above. On the other
hand, there exist real schemes realizable by algebraic curves of some (high) degree, but not
realizable by T-curves of the same degree. Probably such a scheme can be found even for degree 7
or 8.”

[Itenberg and Viro, 1996]
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3

Current State-of-the-Art
Topological Characterization of Curves

1. d = 6, 7: resolved in 1970s and 1980s [Rohlin, 1978, Nikulin, 1980, Viro, 1984, Gudkov, 1974]

2. d = 8: mostly but not entirely resolved [Orevkov, 2002]

3. d = 9: mostly fragmented [Orevkov, 2010]

Required. (a) Establishing existence of curves of certain types and (b) Ruling out
non-types.

Viro’s Patchworking method allows for explicit construction of curves → T-curves.
[Viro, 1986]

Itenberg and Viro. “All real schemes of curves of degree < 6 and almost all real schemes of
curves of degree 7 have been realized by the patchwork construction described above. On the other
hand, there exist real schemes realizable by algebraic curves of some (high) degree, but not
realizable by T-curves of the same degree. Probably such a scheme can be found even for degree 7
or 8.”

[Itenberg and Viro, 1996]
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Viro’s Patchworking
Examples in degree 8

(a) ⟨17 ⊔ 1⟨2⟩ ⊔ 1⟨1⟩⟩ (b) ⟨16 ⊔ 3⟨1⟩⟩

Note. Curve is defined by a (regular) triangulation and a signing with ±1 at the nodes;
actual polynomial obtained via lifting.
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3

Answering Itenberg and Viro’s Open Problem for Degree 7
Our results

[Geiselmann et al., 2026]

Theorem (Informal)
All real schemes of curves of degree 7 can be realized by patchwork constructions.

Moreover, 4 triangulations are sufficient to cover all types.

Theorem (Informal)
All real schemes of curves of degree 6 can be realized by patchwork constructions with no more
than two 2 triangulations.

Moreover,
1. constructions are explicit
2. the lifting coefficients are very small
3. we provide explicit distributions over the realized types by triangulations
4. ... (see paper for more properties)
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3

What does this have to do with AI?
Our results

In principle the problem is “trivial”:

Simply enumerate all triangulations and signings.

“Minor details”:
1. For a single triangulation there are 236 = 68.719.476.736 signings. At initially 20

type computations/sec ≈ 100 cpu-days for a single triangulation.
2. Then still need to “find” good triangulations.

⇒ Basically impossible to search

Our approach: combination of human + AI insights
1. New highly-optimized type algorithm developed leveraging AI, symmetry

reduction, etc with final implementation in “near-assembler” Rust
⇒≈ 4 · 106 type computations/sec or ≈ 4 hours for a single triangulation

2. (Many) intelligent guesses by humans for good triangulations
(more details soon...)
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Two Regular Triangulations to rule them all
Characterization of curves of degree six
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(a) bat (realizes 53 types)
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(b) moth (realizes 44 types)

Figure: Two regular triangulations of 6 · Δ2 realizing all nonempty real schemes types of degree six.
Values at the vertices indicate lifting functions.
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Four Regular Triangulations to rule them all
Characterization of curves of degree seven
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(b) spl (realizes 107 types)

Figure: The four regular triangulations of 7 · Δ2 realizing all real schemes types of degree seven.
The values at the vertices indicate the respective lifting functions.
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Figure: The four regular triangulations of 7 · Δ2 realizing all real schemes types of degree seven.
The values at the vertices indicate the respective lifting functions.
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Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Final Remarks

1. AI can be used in various ways in modern mathematical research workflows (actual
discovery, verification, etc); beyond simple black-box prompting

2. Fully-automatic discovery of new mathematics might be possible in the future but
relies on strong verification approaches (LEAN might be too inefficient)

3. The agentic harness seems to be key: how does the agent receive feedback on its
work, how is it guided, and which tools are available?

4. Empirically: the human-in-the-loop is crucial to guide the search

The promises of AI4MATH are great but need to go beyond simple black-box
prompting “your favorite Erdős problem” (which then turns out having a solution that is
already known)...
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Thank you!
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of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:
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