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What is this talk about?

Introduction

What Al can do for Mathematics? Trends and two concrete examples.

Why? Al is going to change the way of how we do science and mathematics.

Today: Brief overview of approach and two new applications.

Outline
® Al and Mathematics
¢ The Hadwiger-Nelson Problem
® Hilbert’s 16th Problem

(Hyperlinked) References are not exhaustive; check references contained therein.
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What is this talk about?

Al and Mathematics

Oxford 2 i
Mathematics [x.r"x]

[The Potential for Al in Science and Mathematics - Terence Tao]
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What is this talk about?

Al and Mathematics

Various levels of co-creation. [Haase and Pokutta, 2026]
® Digital Pen: basically like autocorrect, bibtex lookup, etc. 2000s”
¢ Al Task Specialist: ChatGPT, Claude, Gemini, etc. 2022 - 2025
e Al Assistant: Agents with integrated tools, verification, etc. 2025 - present
e Al Co-creator: Fully integrated, autonomous, co-creator 2027(?7?)
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What is this talk about?

Al and Mathematics

Various levels of co-creation. [Haase and Pokutta, 2026]
® Digital Pen: basically like autocorrect, bibtex lookup, etc. 2000s”
¢ Al Task Specialist: ChatGPT, Claude, Gemini, etc. 2022 - 2025
e Al Assistant: Agents with integrated tools, verification, etc. 2025 - present
e Al Co-creator: Fully integrated, autonomous, co-creator 2027(?7?)

Capabilities are impressive but unstable:
® SOTA models achieve post-PhD level scores on benchmarks, yet in day-to-day use
make trivial (logical) errors.
® No hard verification of results and randomness across runs.
® Prompting and scaffolding are still a challenge.

® Availability of tools for verification etc crucial.
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What is this talk about?

Mathematics with computers is not new

Various high-profile examples from the past.

® Four Color Theorem: massive computer-based case checking

[Appel and Haken, 1977, Robertson et al., 1997]

® Kepler Conjecture / Hales” Theorem: extensive computer verification

[Hales et al., 2017]
¢ (lassification of Finite Simple Groups: Formal verification with Lean and Coq
® Boolean Pythagorean Triples Problem: A spectacular 200TB SAT-solver proof.

[Heule et al., 2016]
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Mathematics with computers is not new

Various high-profile examples from the past.

® Four Color Theorem: massive computer-based case checking

[Appel and Haken, 1977, Robertson et al., 1997]

® Kepler Conjecture / Hales” Theorem: extensive computer verification

[Hales et al., 2017]
¢ (lassification of Finite Simple Groups: Formal verification with Lean and Coq
® Boolean Pythagorean Triples Problem: A spectacular 200TB SAT-solver proof.

[Heule et al., 2016]

Crucial role in computational mathematics / scientific computing
¢ Finite Elements
® Numerical Simulations
® Optimization

¢ Engineering
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The Hadwiger-Nelson Problem

joint work with: Aldo Kiem, Konrad Mundinger,
Christoph Spiegel, Max Zimmer

ICML 2025 (oral)
https://arxiv.org/abs/2404.05509

Partially supported by ExXC MATH+ Project EF-LiOpt-3

Agent Al in Mathematics

[Mundinger et al., 2025]
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The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdés, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two
points of the same color are at a unit distance apart?
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Problem (Nelson 1950, also: Gardner, Moser, Erdés, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two
points of the same color are at a unit distance apart?

Infinite graph with vertex set E? and edges {x,y} forany x,y € E2 with ||x — yll=1
= chromatic number of the plane x(E2)

Theorem
Assuming Axiom of Choice (AoC): [Bruijn and Erdos, 1951]

Any graph is k-colorable iff every finite subgraph of it is k-colorable.
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The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdés, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two
points of the same color are at a unit distance apart?

Infinite graph with vertex set E> and edges {x, y} for any x,y € E? with [|x —y|| = 1
= chromatic number of the plane x(E2)

Theorem

Assuming Axiom of Choice (AoC): [Bruijn and Erdos, 1951]
Any graph is k-colorable iff every finite subgraph of it is k-colorable.

This problem has a long and complicated history... over 14 pages in [Soifer, 2024]

Sebastian Pokutta - How Machines Explore, Conjecture, and Discover Mathematics 6 /38



History

The Hadwiger-Nelson Problem

Table 3.1 Who created the chromatic number of the plane problem?

Publication | Year | Author(s) Problem creator(s) or source named
[Gar2] 1960 | Gardner “Leo Moser ...writes...”
[Had4] 1961 |Hadwiger Nelson
(after Klee)
[E61.22] 1961 |Erdds “I cannot trace the origin of this problem”
[Cro] 1967 | Croft “A long'®-standing open problem of Erdés”
[Wool] 1973 | Woodall Gardner
[Sim] 1976 | Simmons Erddés, Harary, and Tutte
[E80.38] 1980— |Erdds Hadwiger and Nelson
[E81.23] 1981
[E81.26]
[CFG] 1991 | Croft, Falconer, and | “Apparently due to E. Nelson”
Guy
[KW] 1991 |Klee and Wagon “Posed in 1960-61 by M. Gardner and
Hadwiger”
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p- 24 in [Soifer, 2024]

7 /38



Lower bounds on y(E?)
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.
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The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.
Definition

A graph G = (V,E) is a unit distance graph if there exists an embedding f : V — E? of its
vertices in the plane s.t. ||f (1) — f(v)|| = 1if and only {u, v} € E.
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — E? of its
vertices in the plane s.t. ||f(u) — f(v)|| = 1if and only {u, v} € E.

A triangle gives a lower bound of 3.
The Moser spindle gives a lower bound of 4. [Moser and Moser, 1961]
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.
Definition

A graph G = (V,E) is a unit distance graph if there exists an embedding f : V — E? of its
vertices in the plane s.t. ||f (1) — f(v)|| = 1if and only {u, v} € E.

A triangle gives a lower bound of 3.

The Moser spindle gives a lower bound of 4. [Moser and Moser, 1961]
Theorem
There is a unit distance graph on 20425 vertices with chromatic number 5. [De Grey, 2015]
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

A Colorful Unsolved Problem -
Numberphile

681K views * 5 years ago

n Numberphile @

More links & stuff in full description below |||
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Numberphile is supported by the Mathematical Science...

2 YouTube
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Decades-0ld Graph Problem Yields to
Amateur Mathematician

By EVELYN LAMB | APRIL 17, 2018 26

number of vertices? The problem, now known as the Hadwiger-Nelson
problem or the problem of finding the chromatic number of the plane, has
piqued the interest of many mathematicians, including,

- Quantamacazine
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Aubrey de Grey and Alexander Soifer, I Vicino, January 18, 2020 Ronald L. Graham presents Aubrey D.N.J. de Grey the Prize: $1000, San Diego, September
22,2018
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition
A graph G = (V,E) is a unit distance graph if there exists an embedding f : V — E? of its
vertices in the plane s.t. ||f (1) — f(v)|| = 1if and only {u, v} € E.

A triangle gives a lower bound of 3.

The Moser spindle gives a lower bound of 4. [Moser and Moser, 1961]
Theorem
There is a unit distance graph on 20425 vertices with chromatic number 5. [De Grey, 2015]

Simpler constructions with...

1. 1581 vertices for detail see [De Grey, 2018]
2. 627 vertices [Exoo and Ismailescu, 2020]
3. 553 vertices (as part of Polymathl6) Marijn Heule, for details see [Mixon, 2021]
4. 509 vertices (as part of Polymathl6) Jaan Parts, for details see [Mixon, 2021]
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Upper bounds on x(E?)
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Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings g : E> — [c] := {1, ..., ¢}, usually derived through tesselations using
simple polytopal shapes, give

5< x(E? < ...
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Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings g : E> — [c] := {1, ..., ¢}, usually derived through tesselations using
simple polytopal shapes, give

5< x(B?) < 0.
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Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings g : E> — [c] := {1, ..., ¢}, usually derived through tesselations using
simple polytopal shapes, give

5 < x(B?) < 8.
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Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings g : E> — [c] := {1, ..., ¢}, usually derived through tesselations using
simple polytopal shapes, give

5< x(B?) <7

Sebastian Pokutta - How Machines Explore, Conjecture, and Discover Mathematics 11/38



Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings g : E> — [c] := {1, ..., ¢}, usually derived through tesselations using
simple polytopal shapes, give

5< x(E?) < 7.
Question. Can we use computers to find admissible colorings g : E2 > [c], ie.,

{xeE? |3y e Bi(x) : g(x) = g()} = 02

... attempts, e.g., via discretization and SAT solvers...
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Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings g : E> — [c] := {1, ..., ¢}, usually derived through tesselations using
simple polytopal shapes, give

5< x(B?) <7

uestion. Can we use computers to find admissible colorings ¢ : B2 — [c ,le.,
p 858

{xeE?| 3y e Bi(x) : g(x) = g()} = 0?
... attempts, e.g., via discretization and SAT solvers...

Idea. Use a parameterized and easily differentiable family gg : E> — A. and find

argminE [/ go(x)-go(y)dy|x € EZ] .
0 By (x)

Key Point. Approach is continuous in nature.
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New upper bounds via
machine learning?
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One second recap: Neural Networks

Neural Networks as Colorings

Input Hidden Layer Output
Layer Layer
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One second recap: Neural Networks

Neural Networks as Colorings

Here. Simply a parameterized continuous function to model the coloring.

Blackbox

input —_— heavily parameterized 3 output

easily differentiable
universal approximator
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One second recap: Neural Networks

Neural Networks as Colorings

Here. Simply a parameterized continuous function to model the coloring.

Blackbox

input —_— heavily parameterized 3 output
easily differentiable

universal approximator

Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t. compact
convergence) in the space of continuous functions.
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Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network gg to minimize

L(6) = / g0(x) - go(y) dydx
[=b,b]x[-b,b] J/B1(x)

for some reasonable b € R?

Sebastian Pokutta - How Machines Explore, Conjecture, and Discover Mathematics 14 /38



Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network gg to minimize

L(6) = / g0(x) - go(y) dydx
[=b,b]x[-b,b] J/B1(x)

for some reasonable b € R?

Problem. Still a continuous problem. How to compute?

Sebastian Pokutta - How Machines Explore, Conjecture, and Discover Mathematics 14 /38



Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network gg to minimize

Lo = [ 20(®) - go(y)dydx
[=b,b]X[~b,b] JB1(x)
for some reasonable b € R?
Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point x e [=b,b] X [-b,b] and
y(i) € Bi(x)fori=1,...,m
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Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network gg to minimize

Lo = [ 20(®) - go(y)dydx
[=b,b]X[~b,b] JB1(x)
for some reasonable b € R?
Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point x0 e [-b,b] X [-b, b] and
y(i) € Bi(x) fori=1,...,m and use that

\ 1 & . )
VoL(6) = VoL (0) = — > Vo go(x?) - go(y"),
i=1
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Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network gg to minimize

L(6) = / g0(x) - go(y) dydx
[=b,b]x[-b,b] J/B1(x)

for some reasonable b € R?
Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point x0 e [-b,b] X [-b, b] and
y(i) € Bi(x) fori=1,...,m and use that

\ 1 & . )
VoL(6) ~ VoL(6) = — > Vo go(”) - g0(/"),
i=1

where Vg gg(x(i)) - 20 (y(i) ) is easily computed through backpropagation,
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Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network gg to minimize

L(6) = / g0(x) - go(y) dydx
[=b,b]x[-b,b] J/B1(x)

for some reasonable b € R?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point x0 e [-b,b] X [-b, b] and
y(i) € Bi(x) fori=1,...,m and use that

\ 1 & . )
VoL(6) ~ VoL(6) = — > Vo go(”) - g0(/"),
i=1

where Vg gg(x(i)) - 20 (y(i) ) is easily computed through backpropagation, to adjust the
parameters 6 with an appropriate step size aj through

Ok+1 = Ok — ax VoL(6).

= Very flexible approach “Deep Annealing”
(also: tropicalization of loss function aka softmax... “minimize the max”)
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Unfortunately this coloring was already known...

Neural Networks as Colorings

FIG. 3. A good T-coloring of (R, 1)

Theorem
99.985% of the plane can be colored with 6 colors such that no two points of the same color are a
unit distance apart. [Pritikin, 1998, Parts, 2020]
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Unfortunately this coloring was already known...

Neural Networks as Colorings

. A /
! ! ( 4 1
R ; X
B s s 6 3 )
- /
2 ki z . € 2
. 4
2 (e 6 | 3
B B - \
. : 2
FIG. 3. A good T-coloring of (R, 1).
Theorem
99.985% of the plane can be colored with 6 colors such that no two points of the same color are a
unit distance apart. [Pritikin, 1998, Parts, 2020]
Corollary

Any unit distance graph with chromatic number 7 must have at least 6 992 vertices.

= While coloring was known already maybe on the right track?
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Off-diagonal variant
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Going off-diagonal
Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:
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A c-coloring of the plane has type (d1, ..., dc)
if color i does not contain any points at distance d;.
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Going off-diagonal

Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c-coloring of the plane has type (d1, ..., dc)
if color i does not contain any points at distance d;.

Problem (Soifer in Nash and Rassias” Open Problems in Mathematics)

Determine the continuum of six-colorings Xe¢ = {d | (1,1,1,1,1, d) can be realized}.

[Soifer, 1994a, Nash and Rassias, 2016]
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Going off-diagonal
Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c-coloring of the plane has type (d1, ..., dc)
if color i does not contain any points at distance d;.

Problem (Soifer in Nash and Rassias” Open Problems in Mathematics)
Determine the continuum of six-colorings Xe¢ = {d | (1,1,1,1,1, d) can be realized}.

[Soifer, 1994a, Nash and Rassias, 2016]

Status. Six-colorings exist for:

1.d=1/ \5 [Soifer, 1992]
2.d=v2-1 [Hoffman and Soifer, 1993, 1996]
3. Part of family with 0.414 = V2-1<d<1 / V5 ~ 0.447  [Hoffman and Soifer, 1996, Soifer, 1994, 2009]

Sebastian Pokutta - How Machines Explore, Conjecture, and Discover Mathematics 18 /38



Going off-diagonal
Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c-coloring of the plane has type (d1, ..., dc)
if color i does not contain any points at distance d;.

Problem (Soifer in Nash and Rassias” Open Problems in Mathematics)
Determine the continuum of six-colorings Xe¢ ={d | (1,1,1,1,1, d) can be realized}.

[Soifer, 1994a, Nash and Rassias, 2016]

Status. Six-colorings exist for:

1.d=1/ \5 [Soifer, 1992]
2.d=v2-1 [Hoffman and Soifer, 1993, 1996]
3. Part of family with 0.414 = V2-1<d<1 / V5 = 0.447  [Hoftman and Soifer, 1996, Soifer, 1994, 2009]

Deep Annealing approach provides two new colorings leading to...

Theorem
X contains the closed interval [0.354, 0.657]. [Mundinger et al., 2024, 2025]
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Just numerics...?

Neural Networks as Colorings

GEOMBINATORICS CEOMBINATORICS

ARTERLY
v 2024

Welcome to the journal on open
problems of combinatorial &
discrete geometry and related
areas

Geombinatorics

is a quarterly scientific journal of mathematics. It was
established by editor-in-chief Alexander Soifer in 1991 and is
published by the University of Colorado at Colorado Springs. The
journal covers problems in discrete, convex, and combinatorial
geometry, as well as related areas.

Volume XXXIV October 2024 Issue 2
CURRENT ISSUE SUBSCRIBE
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Just numerics...?
Neural Networks as Colorings

NN Output

NN Output with Cesyoids
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Just numerics...?
Neural Networks as Colorings

Voronoi Diagram

Voronoi Diagram with Gentroids o New Conflicts (only counting inside the box) (0.004398)
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Just numerics...?
Neural Networks as Colorings

Voronoi Diagram

Voronoi Diagram yiith Gentroids
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New Conflicts (only counting inside the box) (0.004898)

Voronoi cell filtering...

= Exact constructions for both colorings.
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First coloring: exact components
Neural Networks as Colorings
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Second coloring: exact components

Neural Networks as Colorings
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Is this optimal?

Neural Networks as Colorings

percentage of points with conflicts

0.5 1.0 1.5 2.0 2.5

o
o

Numerical results showing the percentage of points with some conflict for a given
forbidden distance d in the sixth color found over several runs.
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121 Patchworked Curves of Degree Seven

joint work with: Zoe Geiselmann, Michael Joswig, Lars Kastner,
Konrad Mundinger, Christoph Spiegel,
Marcel Wack, and Max Zimmer

Preprint (Sneak Peak)
https://arxiv.org/abs/2602.06888

Partially supported by ExXC MATH+ Project EF-LiOpt-1

Neural Generative Models for Algebraic Curves

[Geiselmann et al., 2026]
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Hilbert’s 16th Problem

Topological Characterization of Curves

In 1900, Hilbert formulated his famous 16th problem:
Provide a topological classification of real plane algebraic curves of arbitrary degree d.

[Hilbert, 1900]
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Hilbert’s 16th Problem

Topological Characterization of Curves

In 1900, Hilbert formulated his famous 16th problem:
Provide a topological classification of real plane algebraic curves of arbitrary degree d.

[Hilbert, 1900]

Example. For degree d = 6, the equation

defines a real algebraic curve in the projective plane.
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Hilbert’s 16th Problem

Topological Characterization of Curves
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Current State-of-the-Art

Topological Characterization of Curves

1. d = 6,7: resolved in 1970s and 1980s [Rohlin, 1978, Nikulin, 1980, Viro, 1984, Gudkov, 1974]
2. d = 8: mostly but not entirely resolved [Orevkov, 2002]
3. d = 9: mostly fragmented [Orevkov, 2010]
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1. d = 6,7: resolved in 1970s and 1980s [Rohlin, 1978, Nikulin, 1980, Viro, 1984, Gudkov, 1974]
2. d = 8: mostly but not entirely resolved [Orevkov, 2002]
3. d = 9: mostly fragmented [Orevkov, 2010]

Required. (a) Establishing existence of curves of certain types and (b) Ruling out
non-types.
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Current State-of-the-Art

Topological Characterization of Curves

1. d = 6,7: resolved in 1970s and 1980s [Rohlin, 1978, Nikulin, 1980, Viro, 1984, Gudkov, 1974]
2. d = 8: mostly but not entirely resolved [Orevkov, 2002]
3. d = 9: mostly fragmented [Orevkov, 2010]

Required. (a) Establishing existence of curves of certain types and (b) Ruling out
non-types.

Viro’s Patchworking method allows for explicit construction of curves — T-curves.

[Viro, 1986]

Itenberg and Viro. “All real schemes of curves of degree < 6 and almost all real schemes of
curves of degree 7 have been realized by the patchwork construction described above. On the other
hand, there exist real schemes realizable by algebraic curves of some (high) degree, but not
realizable by T-curves of the same degree. Probably such a scheme can be found even for degree 7
or8.”

[Ttenberg and Viro, 1996]
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Viro’s Patchworking
Examples in degree 8

9 L

(@) (17 U 12) L 1(1)) (b) (16 LI 3(1))

Note. Curve is defined by a (regular) triangulation and a signing with +1 at the nodes;
actual polynomial obtained via lifting.
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Answering Itenberg and Viro’s Open Problem for Degree 7

Our results

[Geiselmann et al., 2026]
Theorem (Informal)
All real schemes of curves of degree 7 can be realized by patchwork constructions.
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Answering Itenberg and Viro’s Open Problem for Degree 7

Our results

[Geiselmann et al., 2026]
Theorem (Informal)

All real schemes of curves of degree 7 can be realized by patchwork constructions.
Moreover, 4 triangulations are sufficient to cover all types.

Theorem (Informal)

All real schemes of curves of degree 6 can be realized by patchwork constructions with no more
than two 2 triangulations.
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Answering Itenberg and Viro’s Open Problem for Degree 7

Our results

[Geiselmann et al., 2026]
Theorem (Informal)

All real schemes of curves of degree 7 can be realized by patchwork constructions.
Moreover, 4 triangulations are sufficient to cover all types.

Theorem (Informal)

All real schemes of curves of degree 6 can be realized by patchwork constructions with no more
than two 2 triangulations.

Moreover,
1. constructions are explicit
2. the lifting coefficients are very small
3. we provide explicit distributions over the realized types by triangulations

4. ... (see paper for more properties)
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What does this have to do with AI?

Our results

In principle the problem is “trivial”:

Simply enumerate all triangulations and signings.
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What does this have to do with AI?

Our results

In principle the problem is “trivial”:

Simply enumerate all triangulations and signings.

“Minor details”:

1. For a single triangulation there are 230 = 68.719.476.736 signings. At initially 20
type computations/sec = 100 cpu-days for a single triangulation.

2. Then still need to “find” good triangulations.
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What does this have to do with AI?

Our results

In principle the problem is “trivial”:

Simply enumerate all triangulations and signings.

“Minor details”:

1. For a single triangulation there are 236 = 68.719.476.736 signings. At initially 20
type computations/sec = 100 cpu-days for a single triangulation.

2. Then still need to “find” good triangulations.

= Basically impossible to search

Our approach: combination of human + Al insights

1. New highly-optimized type algorithm developed leveraging Al, symmetry
reduction, etc with final implementation in “near-assembler” Rust
= ~ 4-10° type computations/sec or ~ 4 hours for a single triangulation

2. (Many) intelligent guesses by humans for good triangulations
(more details soon...)
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Two Regular Triangulations to rule them all

Characterization of curves of degree six

©®

(a) bat (realizes 53 types) (b) moth (realizes 44 types)

Figure: Two regular triangulations of 6 - Aj realizing all nonempty real schemes types of degree six.
Values at the vertices indicate lifting functions.
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Four Regular Triangulations to rule them all

Characterization of curves of degree seven

(a) cen (realizes 115 types)

Figure: The four regular triangulations of 7 - A realizing all real schemes types of degree seven.
The values at the vertices indicate the respective lifting functions.
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Four Regular Triangulations to rule them all

Characterization of curves of degree seven

e

AN

(c) fra (realizes 103 types) (d) hon (realizes 47 types)

Figure: The four regular triangulations of 7 - A realizing all real schemes types of degree seven.
The values at the vertices indicate the respective lifting functions.
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Final Remarks

1. Al can be used in various ways in modern mathematical research workflows (actual
discovery, verification, etc); beyond simple black-box prompting

2. Fully-automatic discovery of new mathematics might be possible in the future but
relies on strong verification approaches (LEAN might be too inefficient)

3. The agentic harness seems to be key: how does the agent receive feedback on its
work, how is it guided, and which tools are available?

4. Empirically: the human-in-the-loop is crucial to guide the search

The promises of AI4MATH are great but need to go beyond simple black-box
prompting “your favorite Erdés problem” (which then turns out having a solution that is
already known)...
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Thank you!
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