

Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?

Sebastian Pokutta

Technische Universität Berlin
and
Zuse Institute Berlin

pokutta@math.tu-berlin.de
@spokutta

Baptist University

February, 2026 · Hong Kong

ZUSE
INSTITUTE
BERLIN

Berlin Mathematics Research Center

MATH+

What is this talk about?

Introduction

What AI can do for Mathematics? Trends and a concrete example.

What is this talk about?

Introduction

What AI can do for Mathematics? Trends and a concrete example.

Why? AI is going to change the way of how we do science and mathematics

What is this talk about?

Introduction

What AI can do for Mathematics? Trends and a concrete example.

Why? AI is going to change the way of how we do science and mathematics

Today: Brief overview of approach, two new constructions, and outlook.

What is this talk about?

Introduction

What AI can do for Mathematics? Trends and a concrete example.

Why? AI is going to change the way of how we do science and mathematics

Today: Brief overview of approach, two new constructions, and outlook.

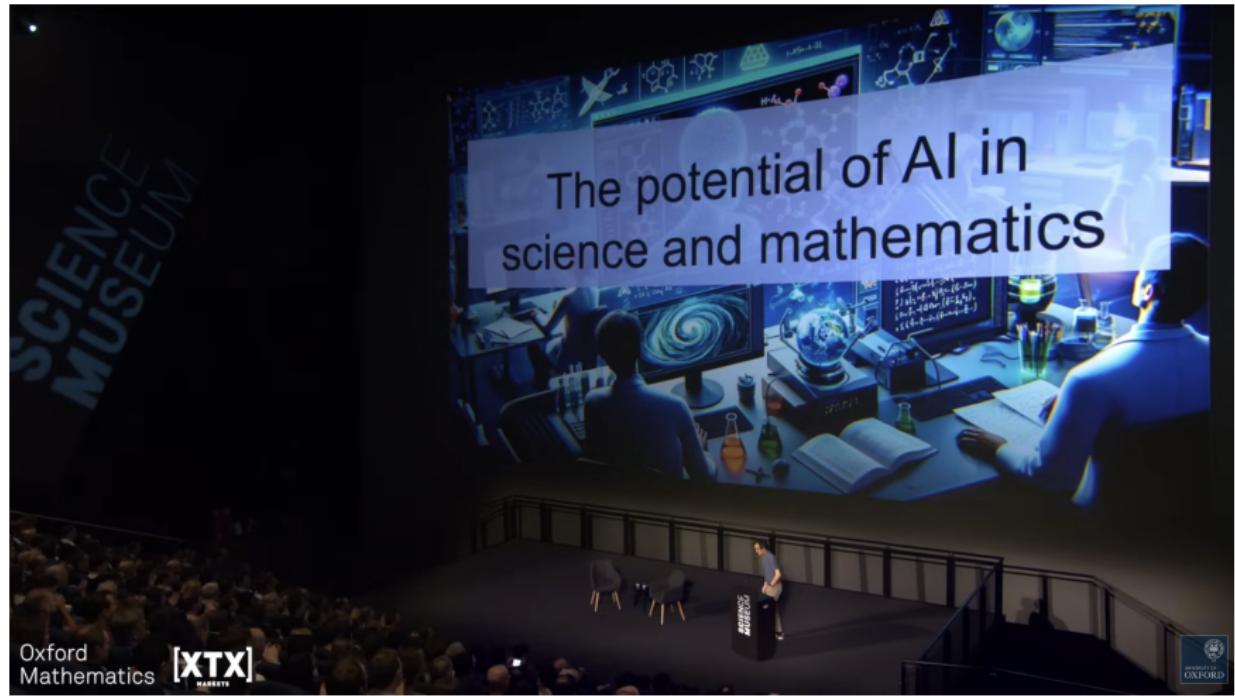
Outline

- AI and Mathematics
- The Hadwiger-Nelson Problem: formulation and status
- Machine learning approach
- Results a.k.a. constructions

(Hyperlinked) References are not exhaustive; check references contained therein.

What is this talk about?

AI and Mathematics



[The Potential for AI in Science and Mathematics - Terence Tao]

What is this talk about?

AI and Mathematics

Various levels of co-creation.

- **Digital Pen**: basically like autocorrect, bibtex lookup, etc.
- **AI Task Specialist**: ChatGPT, Claude, Gemini, etc.
- **AI Assistant**: Agents with integrated tools, verification, etc.
- **AI Co-creator**: Fully integrated, autonomous, co-creator

[Haase and Pokutta, 2026]

"2000s"

2022 - 2025

2025 - present

2027(??)

What is this talk about?

AI and Mathematics

Various levels of co-creation.

- **Digital Pen**: basically like autocorrect, bibtex lookup, etc.
- **AI Task Specialist**: ChatGPT, Claude, Gemini, etc.
- **AI Assistant**: Agents with integrated tools, verification, etc.
- **AI Co-creator**: Fully integrated, autonomous, co-creator

[Haase and Pokutta, 2026]

"2000s"

2022 - 2025

2025 - present

2027(??)

Capabilities are **impressive** but **unstable**:

- SOTA models achieve post-PhD level scores on benchmarks, yet in day-to-day use make trivial (logical) errors.
- No hard verification of results and randomness across runs.
- Prompting and scaffolding are still a challenge.
- Availability of tools for verification etc crucial.

What is this talk about?

Mathematics with computers is not new

Various high-profile examples from the past.

- Four Color Theorem: massive computer-based case checking

[Appel and Haken, 1977, Robertson et al., 1997]

- Kepler Conjecture / Hales' Theorem: extensive computer verification

[Hales et al., 2017]

- Classification of Finite Simple Groups: Formal verification with Lean and Coq

- Boolean Pythagorean Triples Problem: A spectacular 200TB SAT-solver proof.

[Heule et al., 2016]

What is this talk about?

Mathematics with computers is not new

Various high-profile examples from the past.

- Four Color Theorem: massive computer-based case checking

[Appel and Haken, 1977, Robertson et al., 1997]

- Kepler Conjecture / Hales' Theorem: extensive computer verification

[Hales et al., 2017]

- Classification of Finite Simple Groups: Formal verification with Lean and Coq

- Boolean Pythagorean Triples Problem: A spectacular 200TB SAT-solver proof.

[Heule et al., 2016]

Crucial role in computational mathematics / scientific computing

- Finite Elements
- Numerical Simulations
- Optimization
- Engineering
- ...

The Hadwiger-Nelson Problem

joint work with: Aldo Kiem, Konrad Mundinger,
Christoph Spiegel, Max Zimmer

ICML 2025 (oral)

<https://arxiv.org/abs/2404.05509>

The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdős, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two points of the same color are at a unit distance apart?

The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdős, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two points of the same color are at a unit distance apart?

Infinite graph with vertex set \mathbb{E}^2 and edges $\{x, y\}$ for any $x, y \in \mathbb{E}^2$ with $\|x - y\| = 1$
 \Rightarrow chromatic number of the plane $\chi(\mathbb{E}^2)$

The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdős, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two points of the same color are at a unit distance apart?

Infinite graph with vertex set \mathbb{E}^2 and edges $\{x, y\}$ for any $x, y \in \mathbb{E}^2$ with $\|x - y\| = 1$
 \Rightarrow chromatic number of the plane $\chi(\mathbb{E}^2)$

Theorem

Assuming Axiom of Choice (AoC):

Any graph is k -colorable iff every finite subgraph of it is k -colorable.

[Bruijn and Erdos, 1951]

The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdős, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way that no two points of the same color are at a unit distance apart?

Infinite graph with vertex set \mathbb{E}^2 and edges $\{x, y\}$ for any $x, y \in \mathbb{E}^2$ with $\|x - y\| = 1$
 \Rightarrow chromatic number of the plane $\chi(\mathbb{E}^2)$

Theorem

Assuming Axiom of Choice (AoC):

Any graph is k -colorable iff every finite subgraph of it is k -colorable.

[Bruijn and Erdos, 1951]

This problem has a long and complicated history...

over 14 pages in [Soifer, 2024]

History

The Hadwiger-Nelson Problem

Table 3.1 Who created the chromatic number of the plane problem?

Publication	Year	Author(s)	Problem creator(s) or source named
[Gar2]	1960	Gardner	“Leo Moser ...writes...”
[Had4]	1961	Hadwiger (after Klee)	Nelson
[E61.22]	1961	Erdős	“I cannot trace the origin of this problem”
[Cro]	1967	Croft	“A long ¹⁸ -standing open problem of Erdős ”
[Woo1]	1973	Woodall	Gardner
[Sim]	1976	Simmons	Erdős, Harary, and Tutte
[E80.38]	1980–	Erdős	Hadwiger and Nelson
[E81.23]	1981		
[E81.26]			
[CFG]	1991	Croft, Falconer, and Guy	“Apparently due to E. Nelson ”
[KW]	1991	Klee and Wagon	“Posed in 1960–61 by M. Gardner and Hadwiger ”

p. 24 in [Soifer, 2024]

Lower bounds on $\chi(\mathbb{E}^2)$

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition

A graph $G = (V, E)$ is a **unit distance graph** if there exists an embedding $f : V \rightarrow \mathbb{E}^2$ of its vertices in the plane s.t. $\|f(u) - f(v)\| = 1$ if and only $\{u, v\} \in E$.

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition

A graph $G = (V, E)$ is a **unit distance graph** if there exists an embedding $f : V \rightarrow \mathbb{E}^2$ of its vertices in the plane s.t. $\|f(u) - f(v)\| = 1$ if and only $\{u, v\} \in E$.

A triangle gives a lower bound of 3.

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition

A graph $G = (V, E)$ is a **unit distance graph** if there exists an embedding $f : V \rightarrow \mathbb{E}^2$ of its vertices in the plane s.t. $\|f(u) - f(v)\| = 1$ if and only $\{u, v\} \in E$.

A triangle gives a lower bound of 3.

The **Moser spindle** gives a lower bound of 4.

[Moser and Moser, 1961]

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

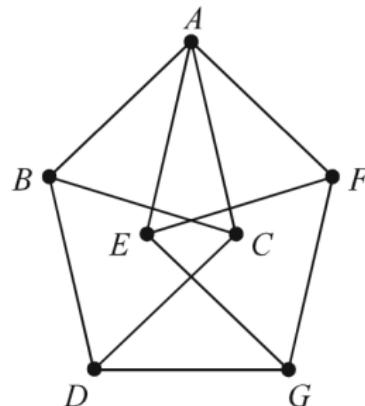
Definition

A graph $G = (V, E)$ is a **unit distance graph** if there exists an embedding $f : V \rightarrow \mathbb{E}^2$ of its vertices in the plane s.t. $\|f(u) - f(v)\| = 1$ if and only $\{u, v\} \in E$.

A triangle gives a lower bound of 3.

The **Moser spindle** gives a lower bound of 4.

[Moser and Moser, 1961]



Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition

A graph $G = (V, E)$ is a **unit distance graph** if there exists an embedding $f : V \rightarrow \mathbb{E}^2$ of its vertices in the plane s.t. $\|f(u) - f(v)\| = 1$ if and only $\{u, v\} \in E$.

A triangle gives a lower bound of 3.

The **Moser spindle** gives a lower bound of 4.

[Moser and Moser, 1961]

Theorem

There is a unit distance graph on 20 425 vertices with chromatic number 5.

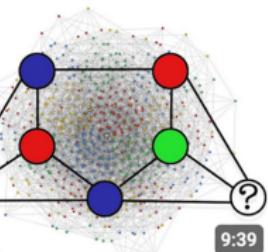
[De Grey, 2018]

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Numberphile



9:39

A Colorful Unsolved Problem - Numberphile

681K views • 5 years ago

Numberphile

More links & stuff in full description below ↓↓

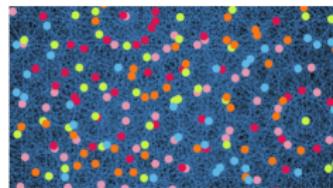
Numberphile is supported by the Mathematical Science...

CC

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.



GRAPH THEORY

Decades-Old Graph Problem Yields to Amateur Mathematician

By EVELYN LAMB | APRIL 17, 2018 | 26

...number of vertices? The problem, now known as the Hadwiger-Nelson problem or the problem of finding the chromatic number of the plane, has piqued the interest of many mathematicians, including...

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Aubrey de Grey and Alexander Soifer, *Il Vicino*, January 18, 2020

Ronald L. Graham presents Aubrey D.N.J. de Grey the Prize: \$1000, San Diego, September 22, 2018

Lower bounds through unit distance graphs

The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition

A graph $G = (V, E)$ is a **unit distance graph** if there exists an embedding $f : V \rightarrow \mathbb{E}^2$ of its vertices in the plane s.t. $\|f(u) - f(v)\| = 1$ if and only $\{u, v\} \in E$.

A triangle gives a lower bound of 3.

The **Moser spindle** gives a lower bound of 4.

[Moser and Moser, 1961]

Theorem

There is a unit distance graph on 20 425 vertices with chromatic number 5.

[De Grey, 2018]

Simpler constructions with...

1. 1581 vertices
2. 627 vertices
3. 553 vertices (as part of Polymath16)
4. 509 vertices (as part of Polymath16)

for detail see [De Grey, 2018]

[Exoo and Ismailescu, 2020]

Marijn Heule, for details see [Mixon, 2021]

Jaan Parts, for details see [Mixon, 2021]

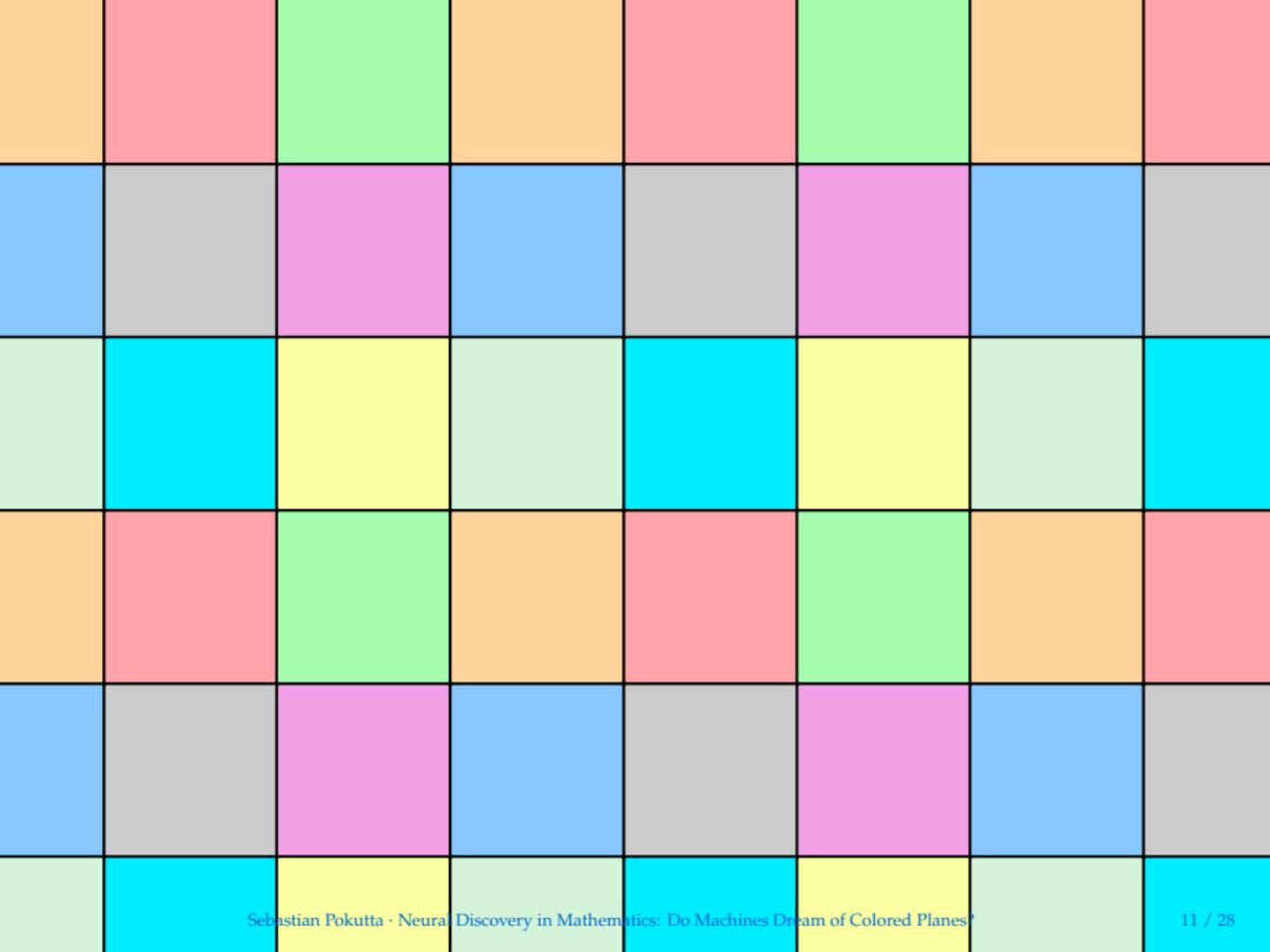
Upper bounds on $\chi(\mathbb{E}^2)$

Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings $g : \mathbb{E}^2 \rightarrow [c] := \{1, \dots, c\}$, usually derived through tessellations using simple polytopal shapes, give

$$5 \leq \chi(\mathbb{E}^2) \leq \dots$$

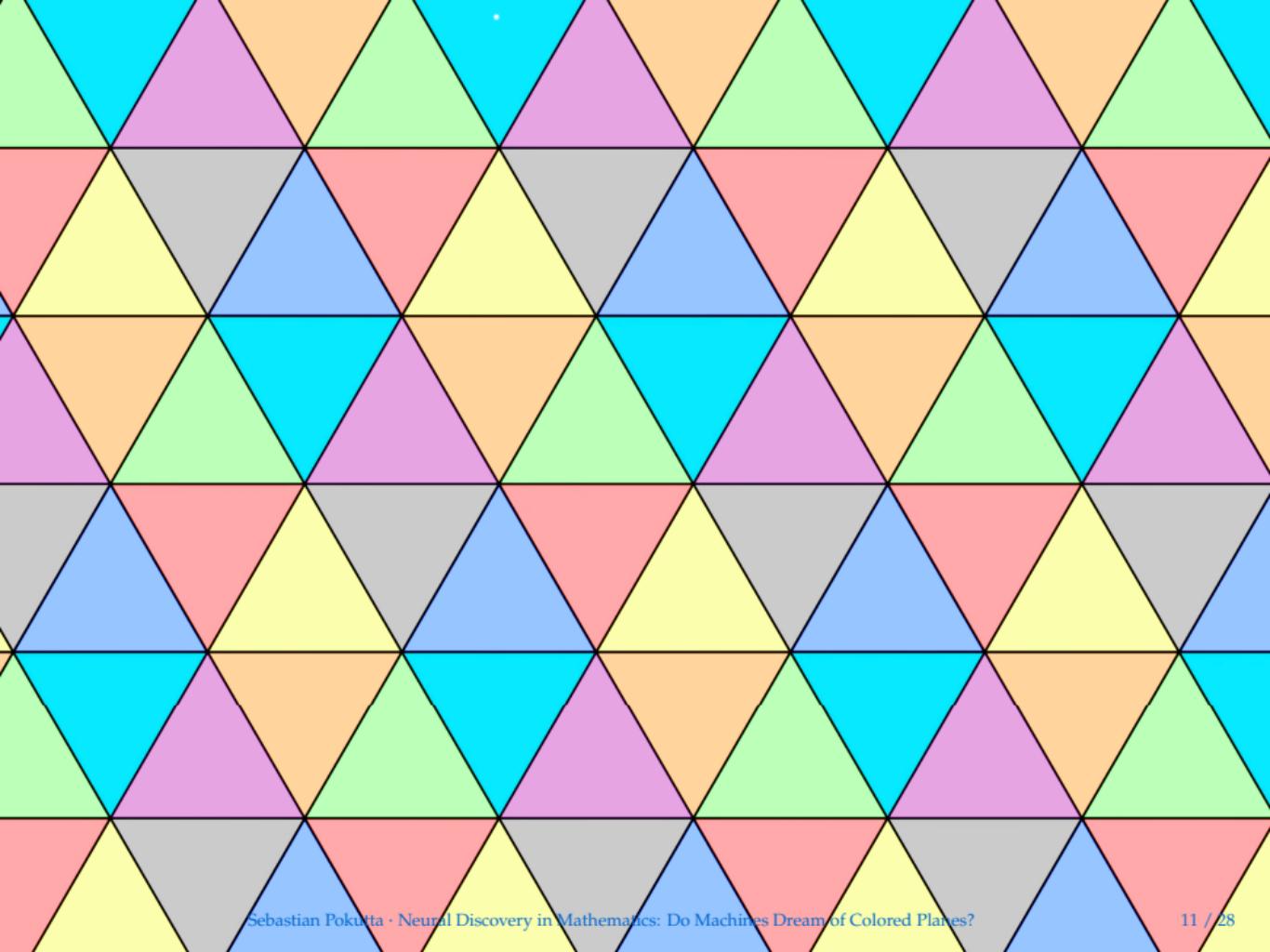


Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings $g : \mathbb{E}^2 \rightarrow [c] := \{1, \dots, c\}$, usually derived through tessellations using simple polytopal shapes, give

$$5 \leq \chi(\mathbb{E}^2) \leq 9.$$

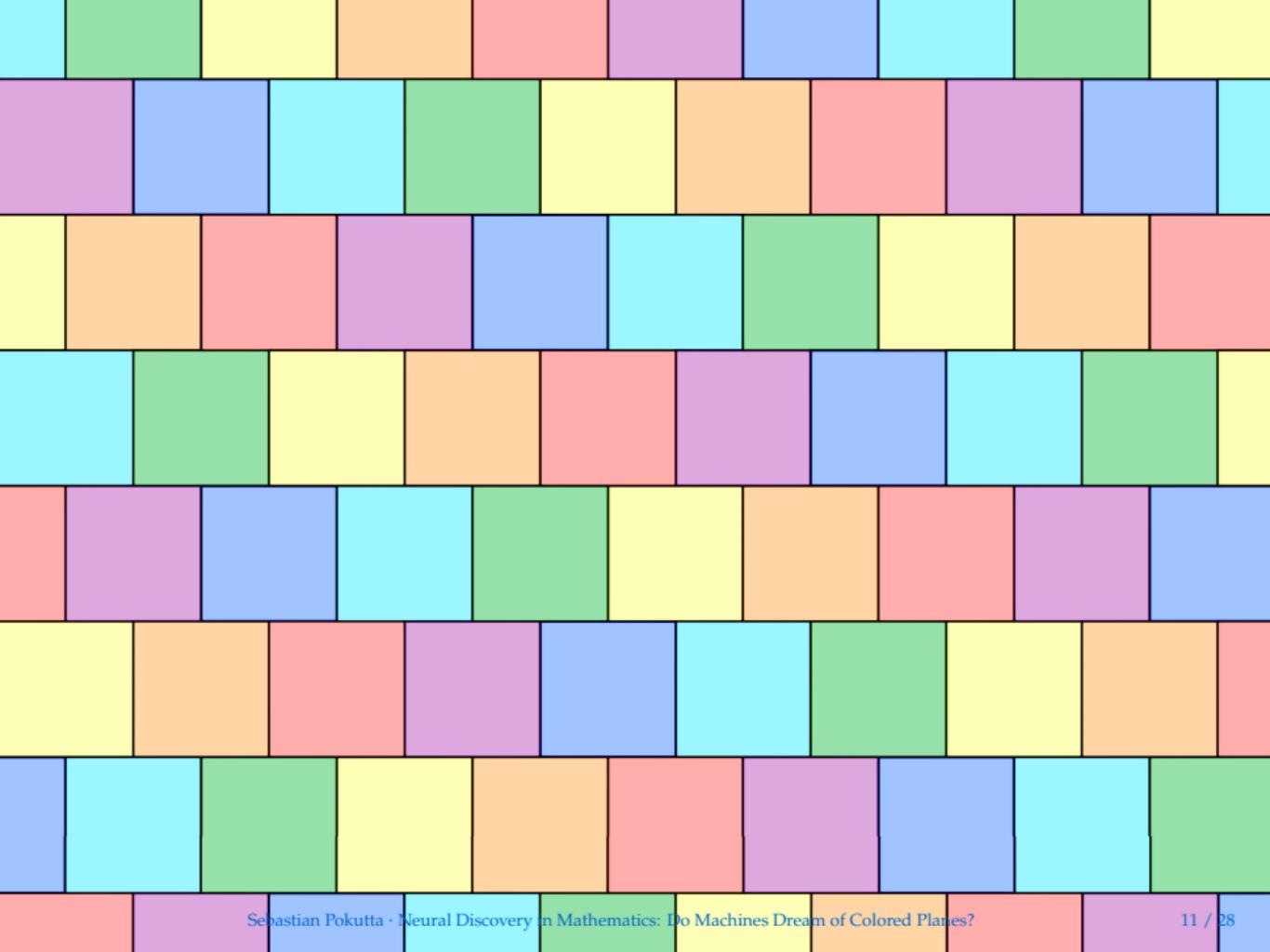


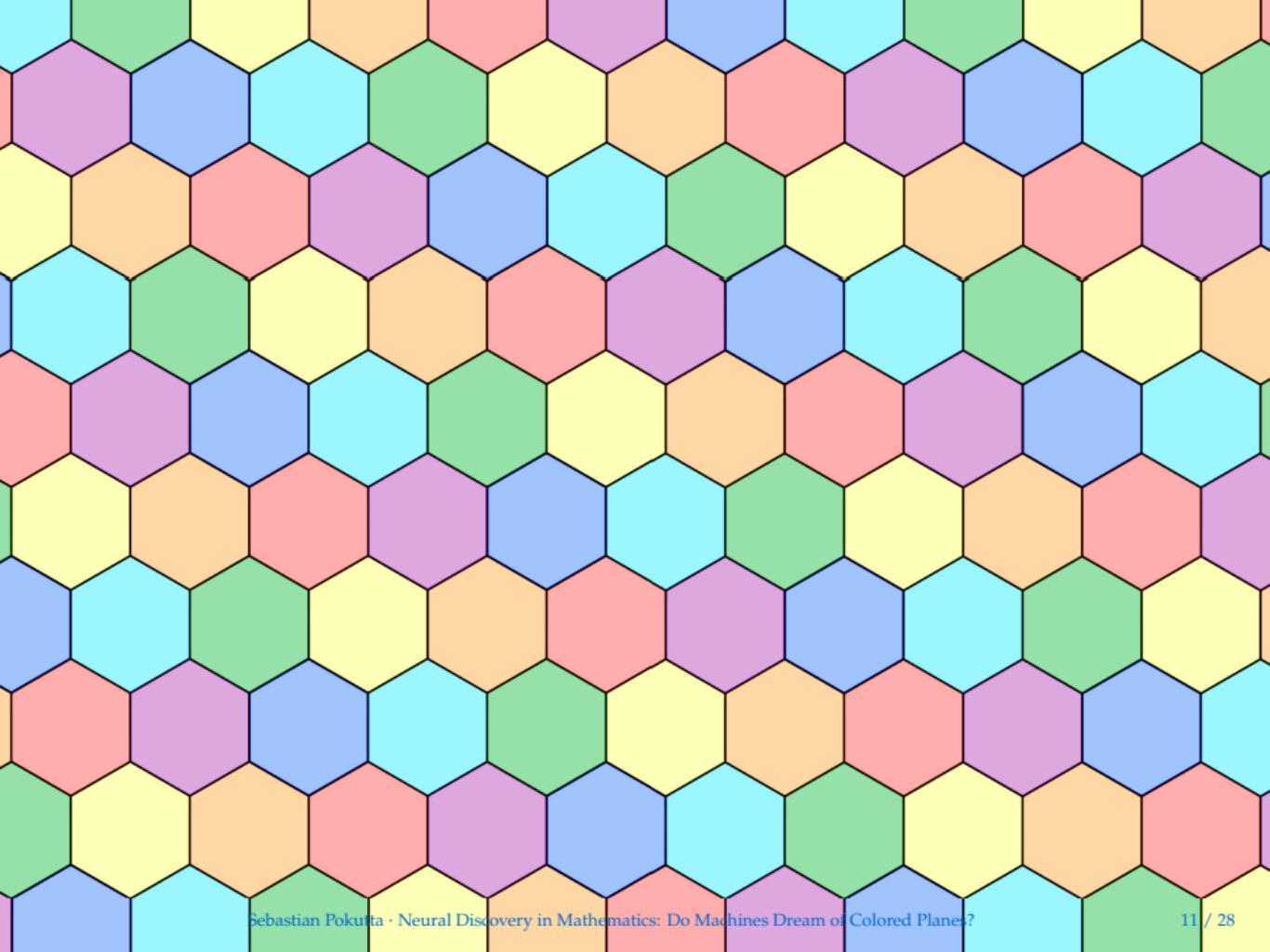
Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings $g : \mathbb{E}^2 \rightarrow [c] := \{1, \dots, c\}$, usually derived through tessellations using simple polytopal shapes, give

$$5 \leq \chi(\mathbb{E}^2) \leq 8.$$





Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings $g : \mathbb{E}^2 \rightarrow [c] := \{1, \dots, c\}$, usually derived through tessellations using simple polytopal shapes, give

$$5 \leq \chi(\mathbb{E}^2) \leq 7.$$

Upper bounds through colorings

The Hadwiger-Nelson Problem

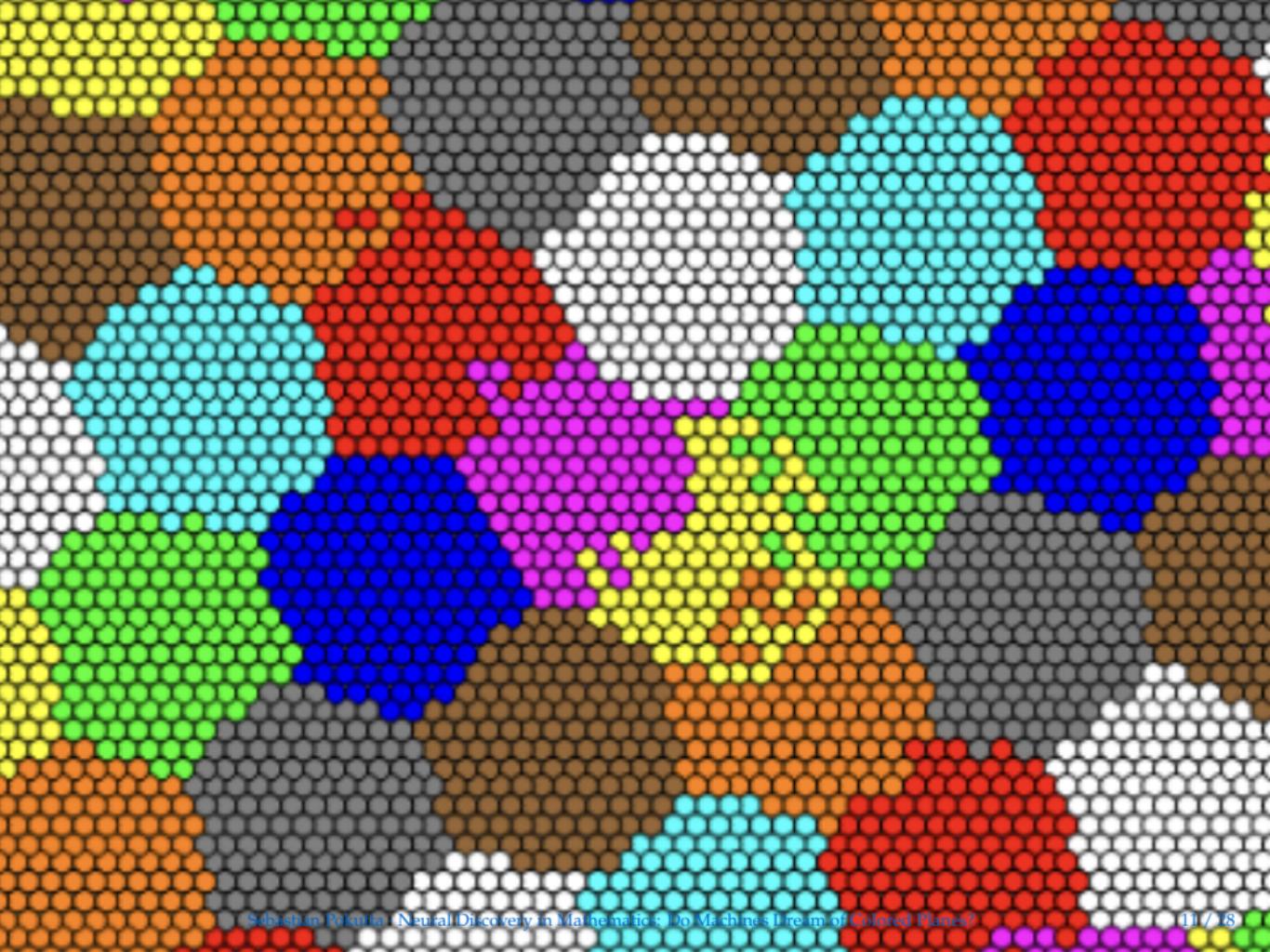
Explicit colorings $g : \mathbb{E}^2 \rightarrow [c] := \{1, \dots, c\}$, usually derived through tessellations using simple polytopal shapes, give

$$5 \leq \chi(\mathbb{E}^2) \leq 7.$$

Question. Can we use computers to find admissible colorings $g : \mathbb{E}^2 \rightarrow [c]$, i.e.,

$$\{x \in \mathbb{E}^2 \mid \exists y \in B_1(x) : g(x) = g(y)\} = \emptyset?$$

... attempts, e.g., via discretization and SAT solvers...



Upper bounds through colorings

The Hadwiger-Nelson Problem

Explicit colorings $g : \mathbb{E}^2 \rightarrow [c] := \{1, \dots, c\}$, usually derived through tessellations using simple polytopal shapes, give

$$5 \leq \chi(\mathbb{E}^2) \leq 7.$$

Question. Can we use computers to find admissible colorings $g : \mathbb{E}^2 \rightarrow [c]$, i.e.,

$$\{x \in \mathbb{E}^2 \mid \exists y \in B_1(x) : g(x) = g(y)\} = \emptyset?$$

... attempts, e.g., via discretization and SAT solvers...

Idea. Use a parameterized and easily differentiable family $g_\theta : \mathbb{E}^2 \rightarrow \Delta_c$ and find

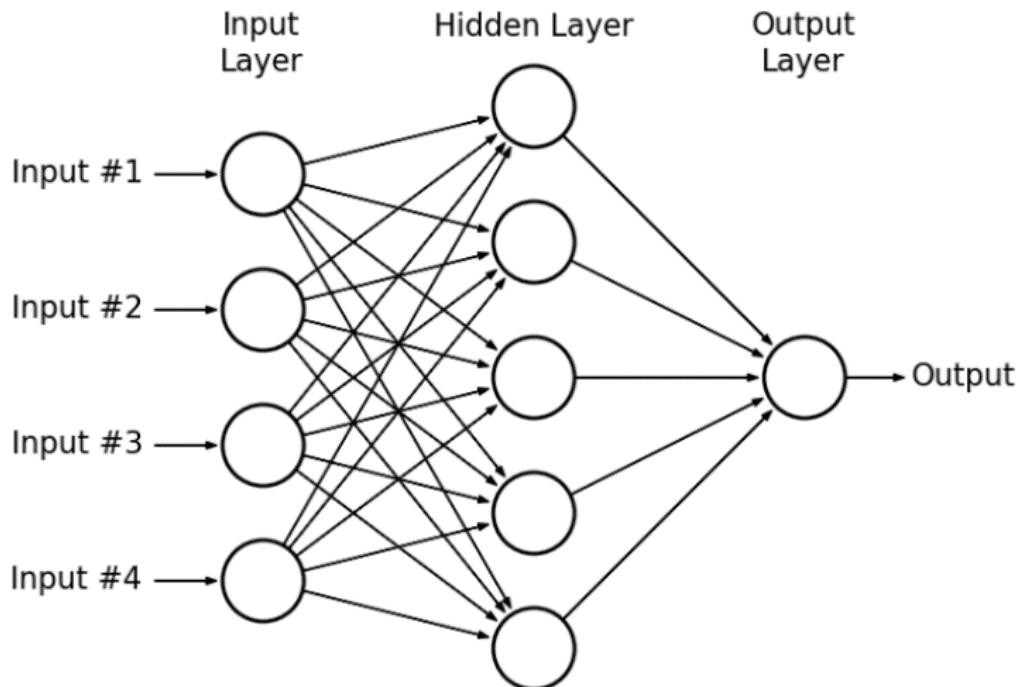
$$\arg \min_{\theta} \mathbb{E} \left[\int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy \mid x \in \mathbb{E}^2 \right].$$

Key Point. Approach is continuous in nature.

New upper bounds via
machine learning?

One second recap: Neural Networks

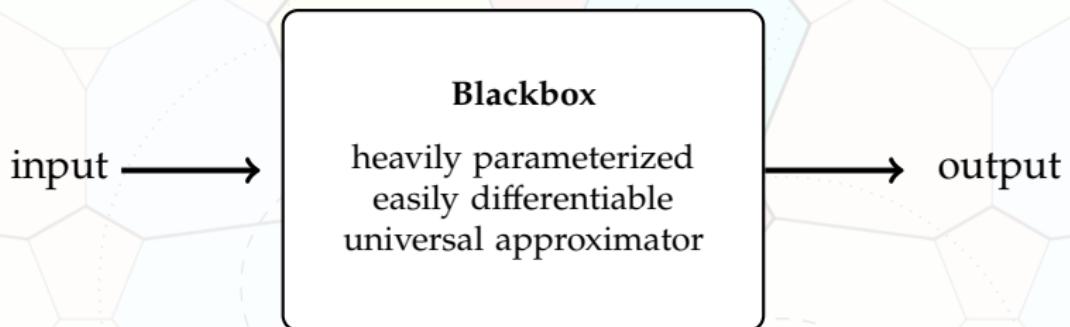
Neural Networks as Colorings



One second recap: Neural Networks

Neural Networks as Colorings

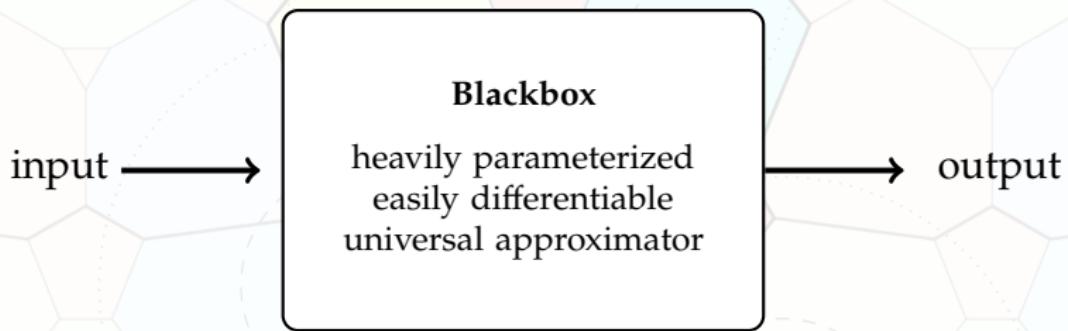
Here. Simply a parameterized continuous function to model the coloring.



One second recap: Neural Networks

Neural Networks as Colorings

Here. Simply a parameterized continuous function to model the coloring.



Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t. compact convergence) in the space of continuous functions.

Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g_θ to minimize

$$L(\theta) = \int_{[-b,b] \times [-b,b]} \int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy dx$$

for some reasonable $b \in \mathbb{R}$?

Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g_θ to minimize

$$L(\theta) = \int_{[-b,b] \times [-b,b]} \int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy dx$$

for some reasonable $b \in \mathbb{R}$?

Problem. Still a continuous problem. How to compute?

Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g_θ to minimize

$$L(\theta) = \int_{[-b,b] \times [-b,b]} \int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy dx$$

for some reasonable $b \in \mathbb{R}$?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point $x^{(i)} \in [-b, b] \times [-b, b]$ and $y^{(i)} \in B_1(x)$ for $i = 1, \dots, m$

Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g_θ to minimize

$$L(\theta) = \int_{[-b,b] \times [-b,b]} \int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy dx$$

for some reasonable $b \in \mathbb{R}$?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point $x^{(i)} \in [-b, b] \times [-b, b]$ and $y^{(i)} \in B_1(x)$ for $i = 1, \dots, m$ and use that

$$\nabla_\theta L(\theta) \approx \hat{\nabla}_\theta L(\theta) \doteq \frac{1}{m} \sum_{i=1}^m \nabla_\theta g_\theta(x^{(i)}) \cdot g_\theta(y^{(i)}),$$

Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g_θ to minimize

$$L(\theta) = \int_{[-b,b] \times [-b,b]} \int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy dx$$

for some reasonable $b \in \mathbb{R}$?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point $x^{(i)} \in [-b, b] \times [-b, b]$ and $y^{(i)} \in B_1(x)$ for $i = 1, \dots, m$ and use that

$$\nabla_\theta L(\theta) \approx \hat{\nabla}_\theta L(\theta) \doteq \frac{1}{m} \sum_{i=1}^m \nabla_\theta g_\theta(x^{(i)}) \cdot g_\theta(y^{(i)}),$$

where $\nabla_\theta g_\theta(x^{(i)}) \cdot g_\theta(y^{(i)})$ is easily computed through backpropagation,

Can we improve the upper bound?

Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g_θ to minimize

$$L(\theta) = \int_{[-b,b] \times [-b,b]} \int_{B_1(x)} g_\theta(x) \cdot g_\theta(y) dy dx$$

for some reasonable $b \in \mathbb{R}$?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point $x^{(i)} \in [-b, b] \times [-b, b]$ and $y^{(i)} \in B_1(x)$ for $i = 1, \dots, m$ and use that

$$\nabla_\theta L(\theta) \approx \hat{\nabla}_\theta L(\theta) \doteq \frac{1}{m} \sum_{i=1}^m \nabla_\theta g_\theta(x^{(i)}) \cdot g_\theta(y^{(i)}),$$

where $\nabla_\theta g_\theta(x^{(i)}) \cdot g_\theta(y^{(i)})$ is easily computed through backpropagation, to adjust the parameters θ with an appropriate step size α_k through

$$\theta_{k+1} = \theta_k - \alpha_k \hat{\nabla}_\theta L(\theta).$$

⇒ **Very flexible approach “Deep Annealing”**

(also: tropicalization of loss function aka softmax... “minimize the max”)

Unfortunately this coloring was already known...

Neural Networks as Colorings

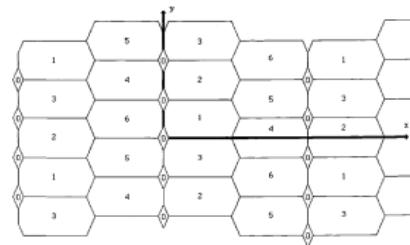
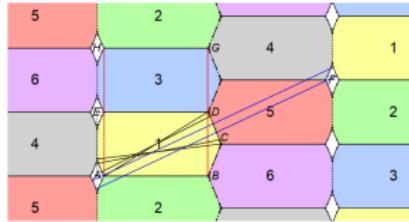
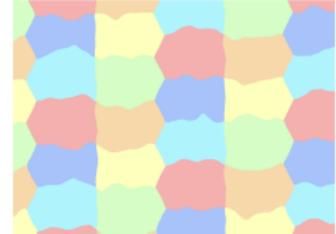


FIG. 3. A good 7-coloring of $(\mathbb{R}^2, 1)$.



Theorem

99.985% of the plane can be colored with 6 colors such that no two points of the same color are a unit distance apart.

[Pritikin, 1998, Parts, 2020]

Unfortunately this coloring was already known...

Neural Networks as Colorings

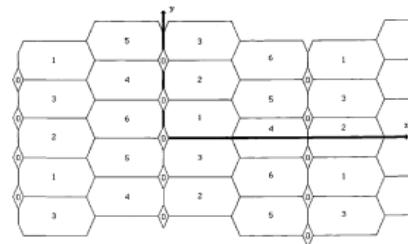
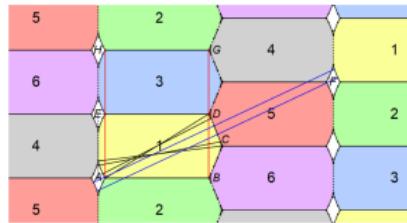


FIG. 3. A good 7-coloring of $(\mathbb{R}^2, 1)$.



Theorem

99.985% of the plane can be colored with 6 colors such that no two points of the same color are a unit distance apart. [Pritikin, 1998, Parts, 2020]

[Pritikin, 1998, Parts, 2020]

Corollary

Any unit distance graph with chromatic number 7 must have at least 6 992 vertices.

⇒ While coloring was known already maybe on the right track?

Off-diagonal variant

Going off-diagonal

Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

Going off-diagonal

Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c -coloring of the plane has **type** (d_1, \dots, d_c)
if color i does not contain any points at distance d_i .

Going off-diagonal

Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c -coloring of the plane has **type** (d_1, \dots, d_c)
if color i does not contain any points at distance d_i .

Problem (Soifer in Nash and Rassias' *Open Problems in Mathematics*)

Determine the continuum of six-colorings $X_6 = \{d \mid (1, 1, 1, 1, 1, d) \text{ can be realized}\}$.

[Soifer, 1994a, Nash and Rassias, 2016]

Going off-diagonal

Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c -coloring of the plane has **type** (d_1, \dots, d_c)
if color i does not contain any points at distance d_i .

Problem (Soifer in Nash and Rassias' *Open Problems in Mathematics*)

Determine the continuum of six-colorings $X_6 = \{d \mid (1, 1, 1, 1, 1, d) \text{ can be realized}\}$.

[Soifer, 1994a, Nash and Rassias, 2016]

Status. Six-colorings exist for:

1. $d = 1/\sqrt{5}$
2. $d = \sqrt{2} - 1$
3. Part of family with $0.414 \approx \sqrt{2} - 1 \leq d \leq 1/\sqrt{5} \approx 0.447$

[Soifer, 1992]

[Hoffman and Soifer, 1993, 1996]

[Hoffman and Soifer, 1996, Soifer, 1994b, 2009]

Going off-diagonal

Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c -coloring of the plane has **type** (d_1, \dots, d_c)
if color i does not contain any points at distance d_i .

Problem (Soifer in Nash and Rassias' *Open Problems in Mathematics*)

Determine the continuum of six-colorings $X_6 = \{d \mid (1, 1, 1, 1, 1, d) \text{ can be realized}\}$.

[Soifer, 1994a, Nash and Rassias, 2016]

Status. Six-colorings exist for:

1. $d = 1/\sqrt{5}$
2. $d = \sqrt{2} - 1$
3. Part of family with $0.414 \approx \sqrt{2} - 1 \leq d \leq 1/\sqrt{5} \approx 0.447$

[Soifer, 1992]

[Hoffman and Soifer, 1993, 1996]

[Hoffman and Soifer, 1996, Soifer, 1994b, 2009]

Deep Annealing approach provides two new colorings leading to...

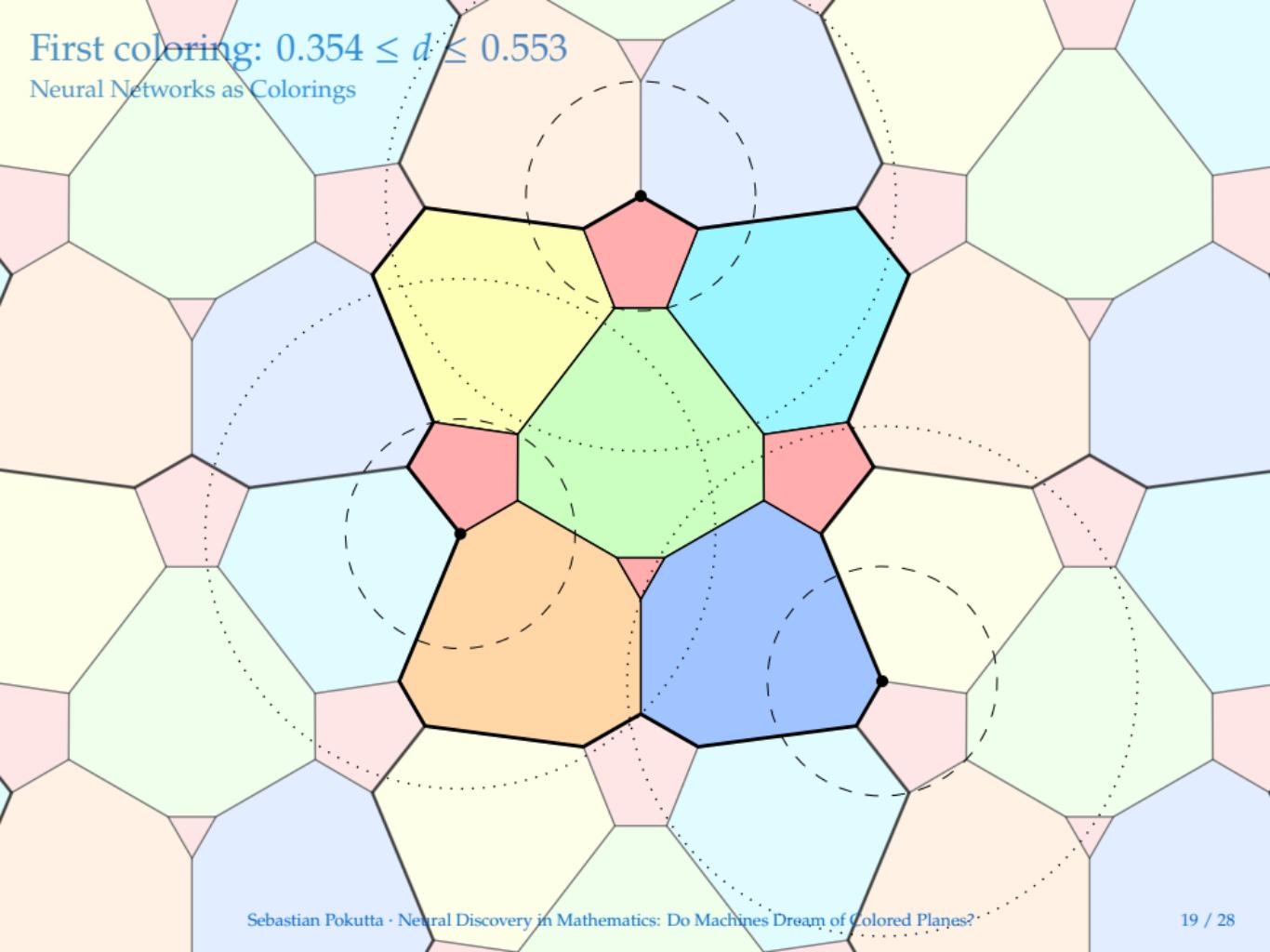
Theorem

X_6 contains the closed interval $[0.354, 0.657]$.

[Mundinger et al., 2024]

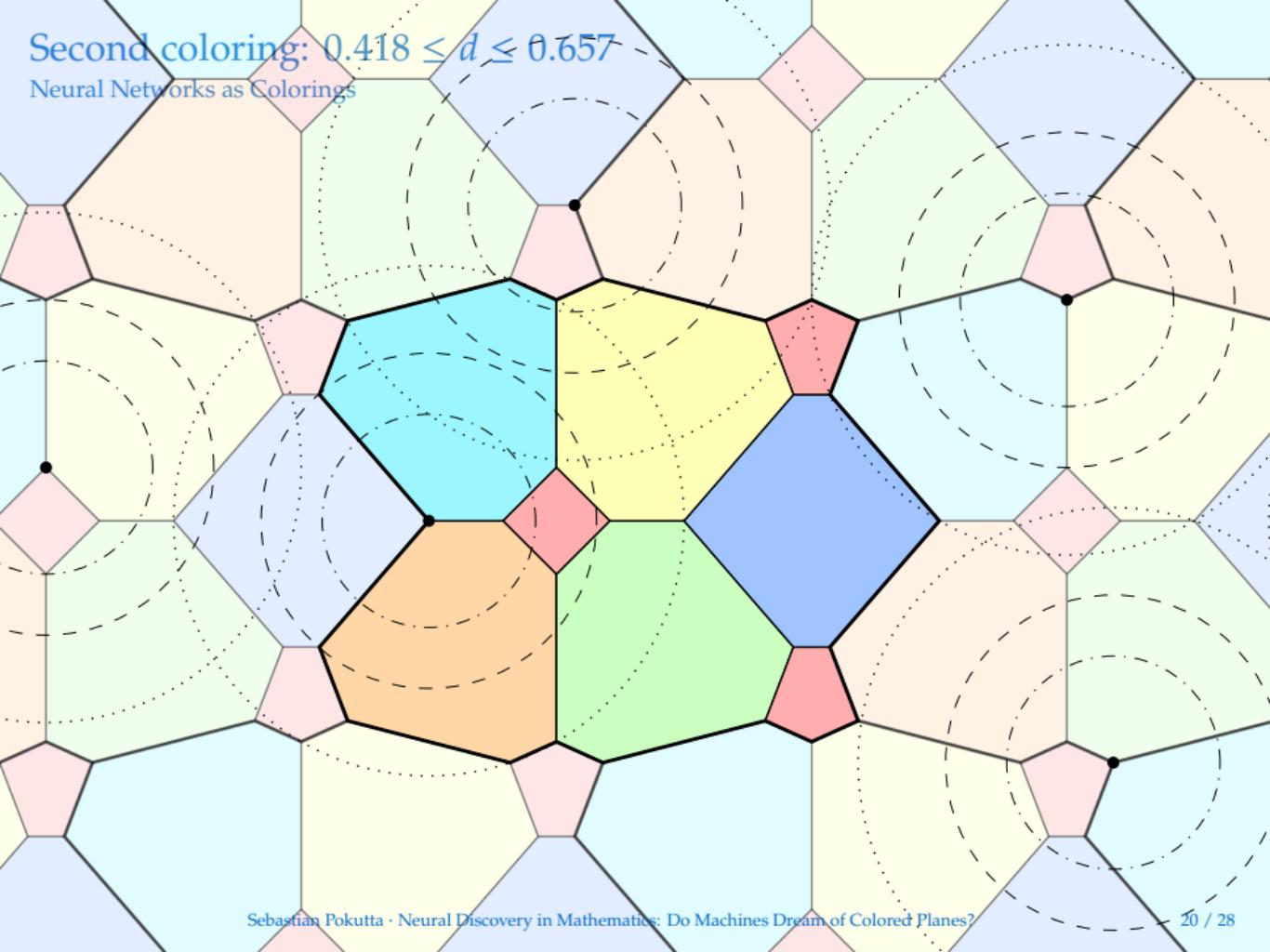
First coloring: $0.354 \leq d \leq 0.553$

Neural Networks as Colorings



Second coloring: $0.418 \leq d \leq 0.657$

Neural Networks as Colorings



GEOMBINATORICS QUARTERLY

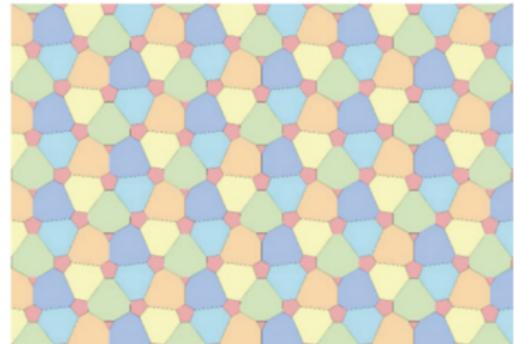
Welcome to the journal on open problems of combinatorial & discrete geometry and related areas

Geombinatorics

is a quarterly scientific journal of mathematics. It was established by editor-in-chief Alexander Soifer in 1991 and is published by the University of Colorado at Colorado Springs. The journal covers problems in discrete, convex, and combinatorial geometry, as well as related areas.

[CURRENT ISSUE](#)[SUBSCRIBE](#)

GEOMBINATORICS 2024



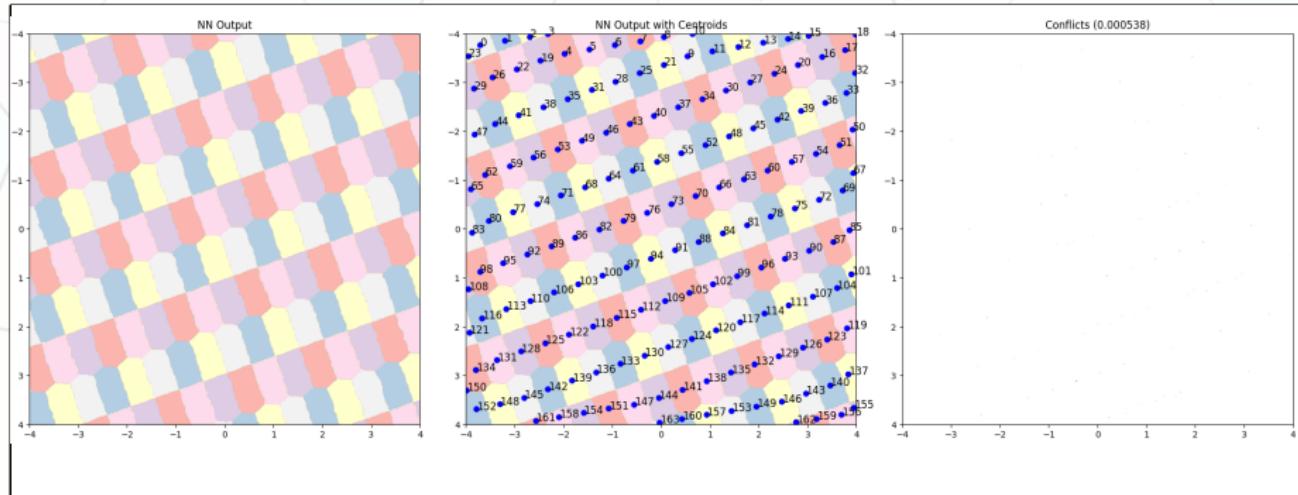
Volume XXXIV

October 2024

Issue 2

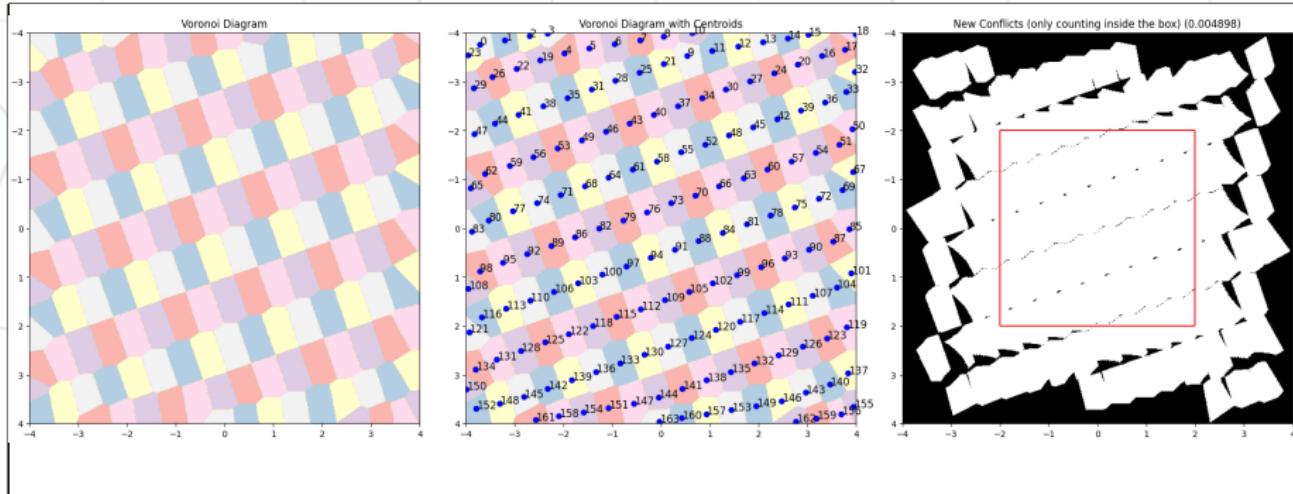
Just numerics...?

Neural Networks as Colorings



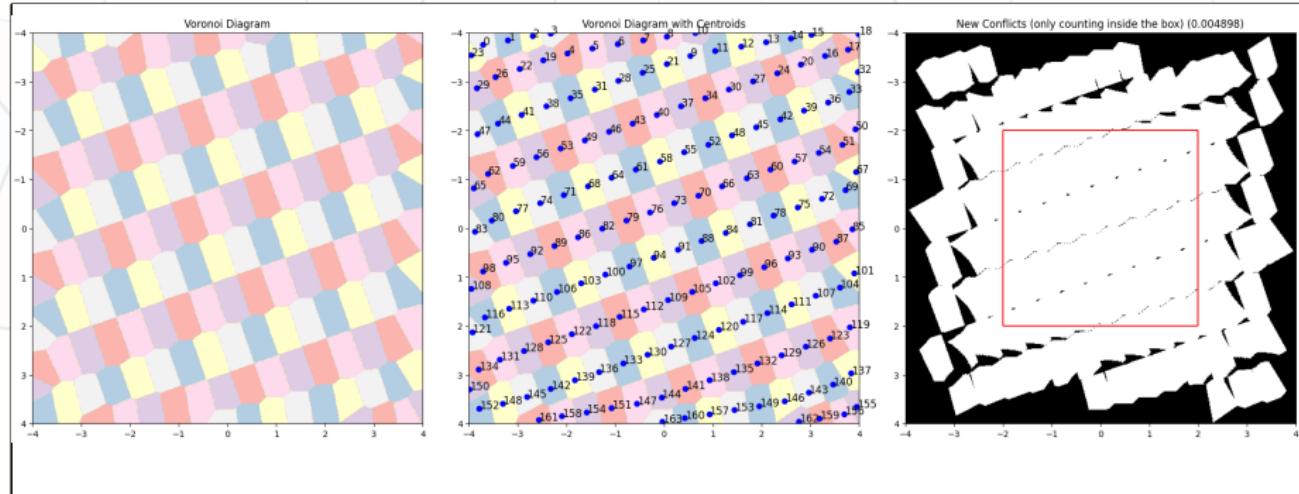
Just numerics...?

Neural Networks as Colorings



Just numerics...?

Neural Networks as Colorings

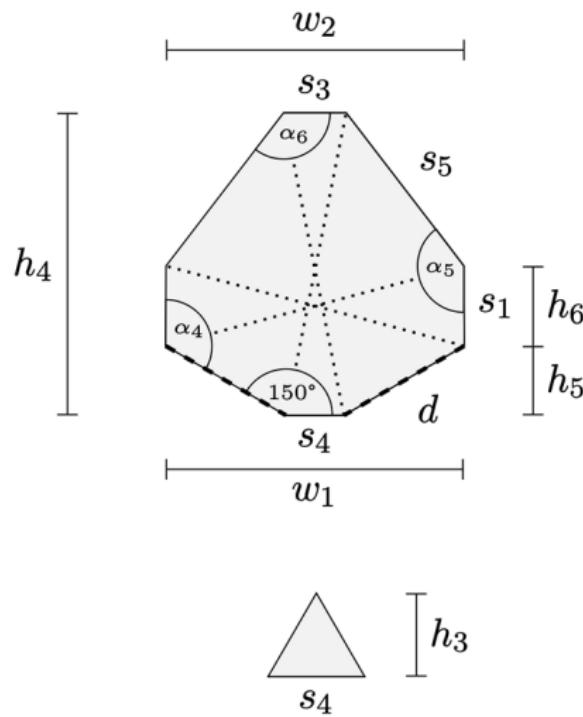
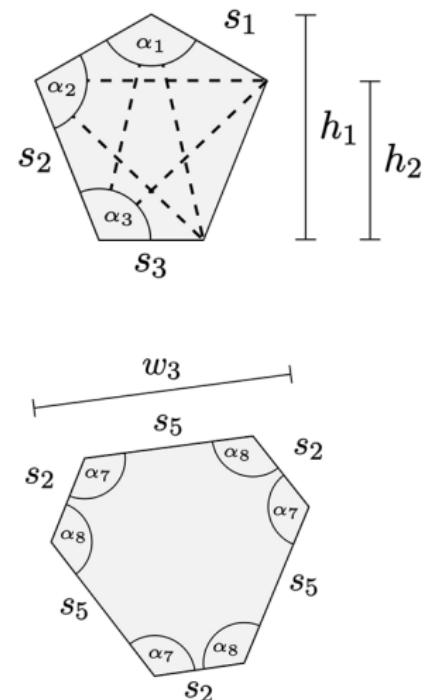


Voronoi cell filtering...

⇒ Exact constructions for both colorings.

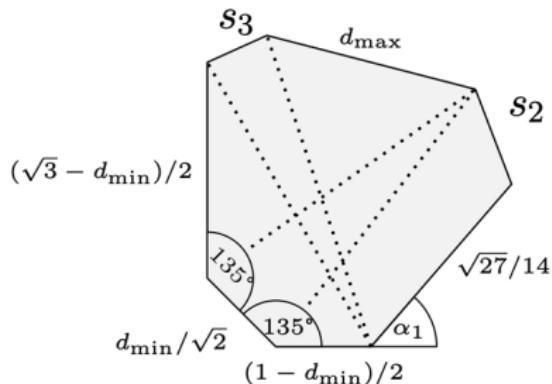
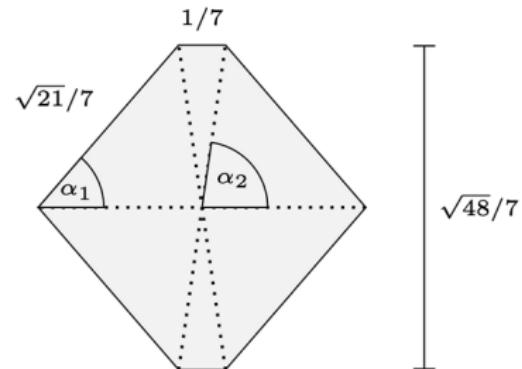
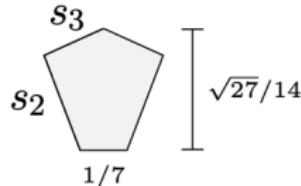
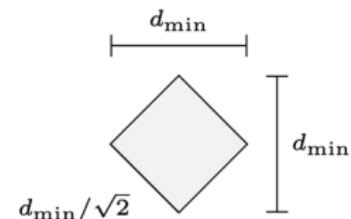
First coloring: exact components

Neural Networks as Colorings



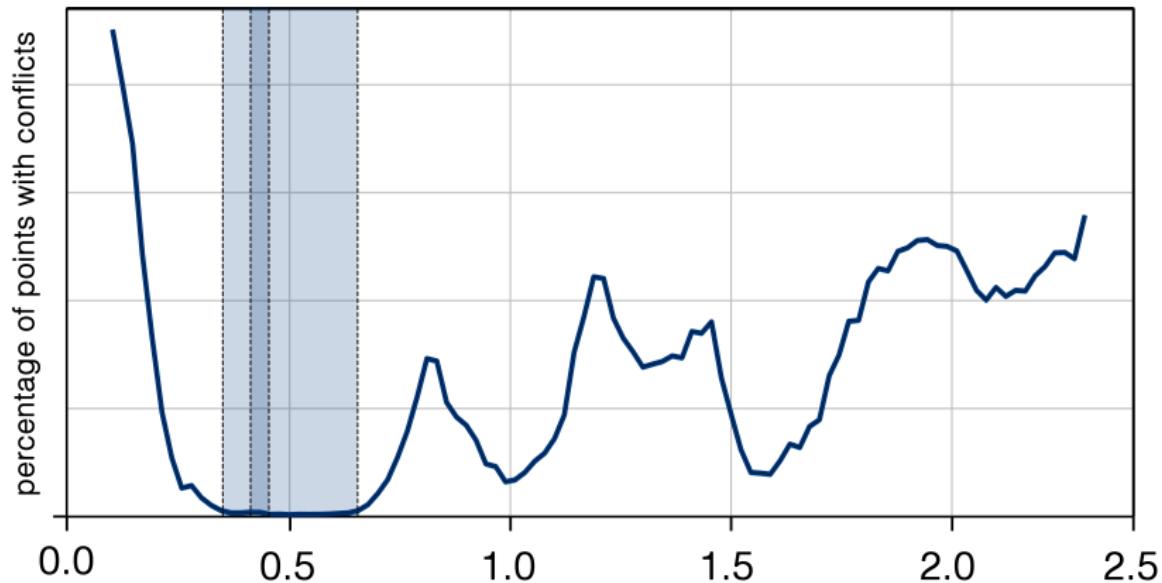
Second coloring: exact components

Neural Networks as Colorings



Is this optimal?

Neural Networks as Colorings



Numerical results showing the percentage of points with some conflict for a given forbidden distance d in the sixth color found over several runs.

Under the hood

Neural Networks as Colorings

External Links.

1. From a bad trip to colorings...
2. Example of system output
3. Coloring 1 for different d in last color

Open Problems and Final Remarks

The underlying optimization approach is very flexible:

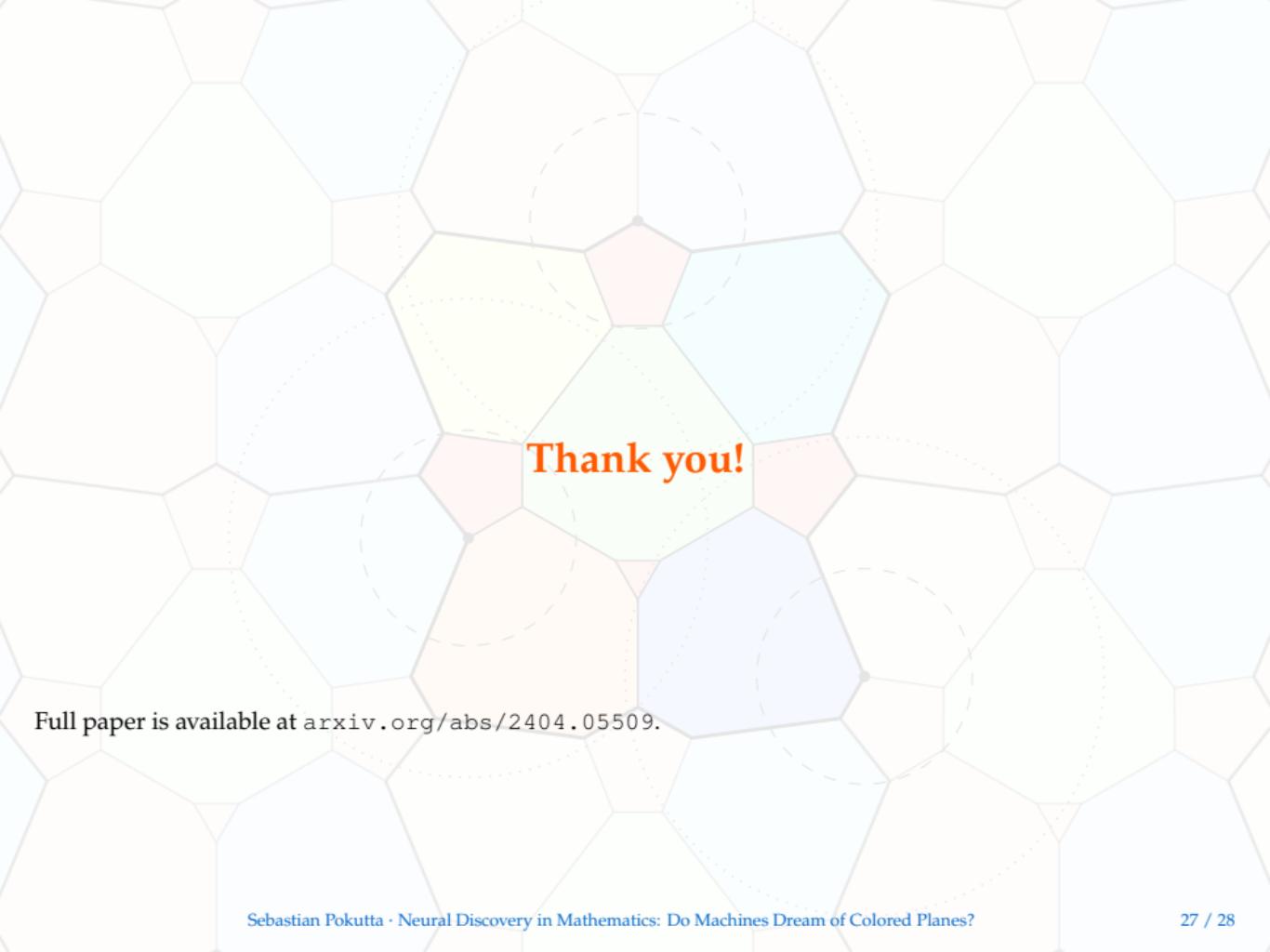
1. Can we improve the upper bound of the **polychromatic number** from 6 to 5?
2. Can we improve the upper bound of the **chromatic number of \mathbb{E}^3** from 15 to 14?
3. Can we apply the same ideas to generate **graphons** and other limit structures?
4. Can we use **adversarial networks** when the objective is non-differentiable?
5. Automatic **formal verification** of constructions with LEAN?

Open Problems and Final Remarks

The underlying optimization approach is very flexible:

1. Can we improve the upper bound of the **polychromatic number** from 6 to 5?
2. Can we improve the upper bound of the **chromatic number of \mathbb{E}^3** from 15 to 14?
3. Can we apply the same ideas to generate **graphons** and other limit structures?
4. Can we use **adversarial networks** when the objective is non-differentiable?
5. Automatic **formal verification** of constructions with LEAN?

The key question. Are we still working on the 6-coloring?



Thank you!

Full paper is available at arxiv.org/abs/2404.05509.

References I

K. I. Appel and W. Haken. Every planar map is four-colorable. *Illinois Journal of Mathematics*, 21(3):429–490, 1977. Computer-assisted proof of the four color theorem (first major such proof).

N. d. Bruijn and P. Erdos. A colour problem for infinite graphs and a problem in the theory of relations. *Indagationes Mathematicae*, 13:371–373, 1951.

A. D. De Grey. The chromatic number of the plane is at least 5. *arXiv preprint arXiv:1804.02385*, 2018.

G. Exoo and D. Ismailescu. The chromatic number of the plane is at least 5: a new proof. *Discrete & Computational Geometry*, 64(1):216–226, 2020.

J. Haase and S. Pokutta. Human–AI CoCreativity: Exploring synergies across levels of creative collaboration. In J. C. Kaufman and M. Worwood, editors, *Generative Artificial Intelligence and Creativity*, chapter 16, pages 205–221. 1 2026. doi: 10.1016/B978-0-443-34073-4.00009-5.

T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, H. L. Truong, C. Kaliszyk, V. Magron, S. McLaughlin, N. T. Thang, N. Q. Truong, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, et al. A formal proof of the kepler conjecture. *Forum of Mathematics, Pi*, 5:e2, 2017. doi: 10.1017/fmp.2017.1. Flyspeck project: complete formal verification of the Kepler conjecture.

M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. In *Theory and Applications of Satisfiability Testing – SAT 2016*, volume 9710 of *Lecture Notes in Computer Science*, pages 228–245. Springer, 2016. Computer-intensive proof generating a multi-terabyte certificate.

I. Hoffman and A. Soifer. Almost chromatic number of the plane. *Geombinatorics*, 3(2):38–40, 1993.

I. Hoffman and A. Soifer. Another six-coloring of the plane. *Discrete Mathematics*, 150(1-3):427–429, 1996.

D. Mixon. Polymath16, seventeenth thread: Declaring victory. *Polymath16*, February 1 2021. Retrieved 16 August 2021.

L. Moser and M. Moser. Solution to problem 10. *Canadian Mathematical Bulletin*, 4:187–189, 1961.

K. Mundinger, S. Pokutta, C. Spiegel, and M. Zimmer. Extending the Continuum of Six-Colorings. *Geombinatorics Quarterly*, 5 2024.

J. F. Nash and M. T. Rassias. *Open problems in mathematics*. Springer, 2016.

J. Parts. What percent of the plane can be properly 5-and 6-colored? *arXiv preprint arXiv:2010.12668*, 2020.

D. Pritikin. All unit-distance graphs of order 6197 are 6-colorable. *Journal of Combinatorial Theory, Series B*, 73(2):159–163, 1998.

N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. The four colour theorem. *Journal of Combinatorial Theory, Series B*, 70(1):2–44, 1997. Shorter and fully computer-verified proof reducing the number of configurations.

A. Soifer. A six-coloring of the plane. *Journal of Combinatorial Theory, Series A*, 61(2):292–294, 1992.

A. Soifer. Six-realizable set x_6 . *Geombinatorics*, III(4):140–145, 1994a.

A. Soifer. An infinite class of six-colorings of the plane. *Congressus Numerantium*, pages 83–86, 1994b.

A. Soifer. *The mathematical coloring book: Mathematics of coloring and the colorful life of its creators*. Springer, 2009.

A. Soifer. *The New Mathematical Coloring Book*. Springer, 2024.