
Figure 1: Building block of first coloring for d = 0.354, 0.45, and 0.553.

form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:
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Introduction

What AI can do for Mathematics? Trends and a concrete example.

Why? AI is going to change the way of how we do science and mathematics

Today: Brief overview of approach, two new constructions, and outlook.

Outline
• AI and Mathematics
• The Hadwiger-Nelson Problem: formulation and status
• Machine learning approach
• Results a.k.a. constructions
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What is this talk about?
AI and Mathematics

[The Potential for AI in Science and Mathematics - Terence Tao]
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What is this talk about?
AI and Mathematics

Various levels of co-creation. [Haase and Pokutta, 2026]

• Digital Pen: basically like autocorrect, bibtex lookup, etc. “2000s”
• AI Task Specialist: ChatGPT, Claude, Gemini, etc. 2022 - 2025
• AI Assistant: Agents with integrated tools, verification, etc. 2025 - present
• AI Co-creator: Fully integrated, autonomous, co-creator 2027(??)

Capabilities are impressive but unstable:
• SOTA models achieve post-PhD level scores on benchmarks, yet in day-to-day use

make trivial (logical) errors.
• No hard verification of results and randomness across runs.
• Prompting and scaffolding are still a challenge.
• Availability of tools for verification etc crucial.
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What is this talk about?
Mathematics with computers is not new

Various high-profile examples from the past.
• Four Color Theorem: massive computer-based case checking

[Appel and Haken, 1977, Robertson et al., 1997]

• Kepler Conjecture / Hales’ Theorem: extensive computer verification
[Hales et al., 2017]

• Classification of Finite Simple Groups: Formal verification with Lean and Coq
• Boolean Pythagorean Triples Problem: A spectacular 200TB SAT-solver proof.

[Heule et al., 2016]

Crucial role in computational mathematics / scientific computing
• Finite Elements
• Numerical Simulations
• Optimization
• Engineering
• ...
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The Hadwiger-Nelson Problem

joint work with: Aldo Kiem, Konrad Mundinger,
Christoph Spiegel, Max Zimmer

ICML 2025 (oral)
https://arxiv.org/abs/2404.05509
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The Hadwiger-Nelson Problem

Problem (Nelson 1950, also: Gardner, Moser, Erdős, Harary, Tutte, ...)
What is the smallest number of colors sufficient for coloring the plane in such a way that no two
points of the same color are at a unit distance apart?

Infinite graph with vertex set E2 and edges {x, y} for any x, y ∈ E2 with ∥x − y∥ = 1
⇒ chromatic number of the plane 𝜒(E2)

Theorem
Assuming Axiom of Choice (AoC): [Bruĳn and Erdos, 1951]

Any graph is k-colorable iff every finite subgraph of it is k-colorable.

This problem has a long and complicated history... over 14 pages in [Soifer, 2024]
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History
The Hadwiger-Nelson Problem

p. 24 in [Soifer, 2024]
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Lower bounds on 𝜒(E2)
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Lower bounds through unit distance graphs
The Hadwiger-Nelson Problem

Find unit distance graphs of large chromatic number.

Definition
A graph G = (V, E) is a unit distance graph if there exists an embedding f : V → E2 of its
vertices in the plane s.t. ∥f (u) − f (v)∥ = 1 if and only {u, v} ∈ E.

A triangle gives a lower bound of 3.
The Moser spindle gives a lower bound of 4. [Moser and Moser, 1961]

Theorem
There is a unit distance graph on 20 425 vertices with chromatic number 5. [De Grey, 2018]

Simpler constructions with...
1. 1581 vertices for detail see [De Grey, 2018]

2. 627 vertices [Exoo and Ismailescu, 2020]

3. 553 vertices (as part of Polymath16) Marĳn Heule, for details see [Mixon, 2021]

4. 509 vertices (as part of Polymath16) Jaan Parts, for details see [Mixon, 2021]
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A triangle gives a lower bound of 3.

The Moser spindle gives a lower bound of 4. [Moser and Moser, 1961]

Theorem
There is a unit distance graph on 20 425 vertices with chromatic number 5. [De Grey, 2018]

Simpler constructions with...
1. 1581 vertices for detail see [De Grey, 2018]

2. 627 vertices [Exoo and Ismailescu, 2020]

3. 553 vertices (as part of Polymath16) Marĳn Heule, for details see [Mixon, 2021]

4. 509 vertices (as part of Polymath16) Jaan Parts, for details see [Mixon, 2021]
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(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Upper bounds on 𝜒(E2)

Sebastian Pokutta · Neural Discovery in Mathematics: Do Machines Dream of Colored Planes? 10 / 28



Figure 1: Building block of first coloring for d = 0.354, 0.45, and 0.553.

form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Upper bounds through colorings
The Hadwiger-Nelson Problem

Explicit colorings g : E2 → [c] := {1, . . . , c}, usually derived through tesselations using
simple polytopal shapes, give

5 ≤ 𝜒(E2) ≤ ...

Question. Can we use computers to find admissible colorings g : E2 → [c], i.e.,{
x ∈ E2 | ∃y ∈ B1(x) : g(x) = g(y)

}
= ∅?

... attempts, e.g., via discretization and SAT solvers...

Idea. Use a parameterized and easily differentiable family g𝜃 : E2 → Δc and find

arg min
𝜃

E
[∫

B1(x)
g𝜃(x) · g𝜃(y) dy

���� x ∈ E2
]
.

Key Point. Approach is continuous in nature.
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x ∈ E2 | ∃y ∈ B1(x) : g(x) = g(y)
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}
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Idea. Use a parameterized and easily differentiable family g𝜃 : E2 → Δc and find

arg min
𝜃

E
[∫

B1(x)
g𝜃(x) · g𝜃(y) dy

���� x ∈ E2
]
.

Key Point. Approach is continuous in nature.
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New upper bounds via
machine learning?
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One second recap: Neural Networks
Neural Networks as Colorings

Here. Simply a parameterized continuous function to model the coloring.

input

Blackbox

heavily parameterized
easily differentiable

universal approximator

output

Theorem (Universal Approximation Theorem)
Feedforward neural networks with certain activation functions are dense (w.r.t. compact
convergence) in the space of continuous functions.
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Can we improve the upper bound?
Neural Networks as Colorings

Idea. Use gradient descent to train a feedforward network g𝜃 to minimize

L(𝜃) =
∫
[−b,b]×[−b,b]

∫
B1(x)

g𝜃(x) · g𝜃(y) dy dx

for some reasonable b ∈ R?

Problem. Still a continuous problem. How to compute?

Stochastic (Batch) Gradient Descent. Sample point x(i) ∈ [−b, b] × [−b, b] and
y(i) ∈ B1(x) for i = 1, . . . ,m and use that

∇𝜃L(𝜃) ≈ ∇̂𝜃L(𝜃) � 1
m

m∑
i=1

∇𝜃 g𝜃(x(i)) · g𝜃(y(i)),

where ∇𝜃 g𝜃(x(i)) · g𝜃(y(i)) is easily computed through backpropagation, to adjust the
parameters 𝜃 with an appropriate step size 𝛼k through

𝜃k+1 = 𝜃k − 𝛼k ∇̂𝜃L(𝜃).

⇒ Very flexible approach “Deep Annealing”
(also: tropicalization of loss function aka softmax... “minimize the max”)
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3

Unfortunately this coloring was already known...
Neural Networks as Colorings

Theorem
99.985% of the plane can be colored with 6 colors such that no two points of the same color are a
unit distance apart. [Pritikin, 1998, Parts, 2020]

Corollary
Any unit distance graph with chromatic number 7 must have at least 6 992 vertices.

⇒ While coloring was known already maybe on the right track?
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building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:
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Off-diagonal variant
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3

Going off-diagonal
Neural Networks as Colorings

If we cannot solve the original problem, we study variants of it:

A c-coloring of the plane has type (d1 , . . . , dc)
if color i does not contain any points at distance di.

Problem (Soifer in Nash and Rassias’ Open Problems in Mathematics)
Determine the continuum of six-colorings X6 = {d | (1, 1, 1, 1, 1, d) can be realized}.

[Soifer, 1994a, Nash and Rassias, 2016]

Status. Six-colorings exist for:
1. d = 1/

√
5 [Soifer, 1992]

2. d =
√

2 − 1 [Hoffman and Soifer, 1993, 1996]

3. Part of family with 0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447 [Hoffman and Soifer, 1996, Soifer, 1994b, 2009]

Deep Annealing approach provides two new colorings leading to...

Theorem
X6 contains the closed interval [0.354, 0.657]. [Mundinger et al., 2024]
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First coloring: 0.354 ≤ d ≤ 0.553
Neural Networks as Colorings

Figure 1: Building block of first coloring for d = 0.354, 0.45, and 0.553.

form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3
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Second coloring: 0.418 ≤ d ≤ 0.657
Neural Networks as Colorings

s4  d (2.1)

s5 � d (2.2)

w1  1 (2.3)

w2  1 (2.4)

w3  1 (2.5)

h1 + h3 + d � 1 (2.6)

Here h1 is the height of the pentagon, h3 the height of the triangle, s4 is the side length of

the triangle, s5 the length of the longest side of the octagon, w1 and w2 two di↵erent widths of

octagon, and w3 the width of the hexagon. Note that a more detailed description of variables

alongside the corresponding shape is given in the appendix. Figure 4 in the appendix also gives

a visual representation of the six cases.

Unfortunately we were unable to derive a closed form expression for the range of d for

which a valid choice of ↵1 can be found. However, it is easy to numerically verify that for

d 2 [0.354, 0.553] such a choice can be made. Furthermore, by linearly interpolating between

the two extreme points, that is by choosing ↵1 = 113.7+(d�0.354) 14.11/0.299, we can remove

the additional degree of freedom in the definition of the pentagon. Finally, we note that there

is always an appropriate choice for the color on the boundaries between the shapes.

Figure 3: Illustration of the second coloring with circles at unit distance (dotted), and distance

dmax (dashed), and distance distance dmin (dash-dotted) highlighted at six critical points.

4
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Figure 1: Building block of first coloring for d = 0.354, 0.45, and 0.553.

form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending

on d).

Figure 2: Illustration of the first coloring with circles at unit distance (dotted) and distance d

(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Just numerics...?
Neural Networks as Colorings

Voronoi cell filtering...

⇒ Exact constructions for both colorings.
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First coloring: exact components
Neural Networks as Colorings
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Second coloring: exact components
Neural Networks as Colorings
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Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Is this optimal?
Neural Networks as Colorings

Numerical results showing the percentage of points with some conflict for a given
forbidden distance d in the sixth color found over several runs.
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A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Under the hood
Neural Networks as Colorings

External Links.
1. From a bad trip to colorings...
2. Example of system output
3. Coloring 1 for different d in last color
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form of ↵1, the angle at the ‘top’ of the pentagon. We will later determine the range of valid

↵1 depending on d numerically and see that this additional variable can be fixed by linearly

interpolating between two extremal values (though other options can also be valid depending
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(dashed) highlighted at three critical points.

A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Open Problems and Final Remarks

The underlying optimization approach is very flexible:

1. Can we improve the upper bound of the polychromatic number from 6 to 5?

2. Can we improve the upper bound of the chromatic number of E3 from 15 to 14?

3. Can we apply the same ideas to generate graphons and other limit structures?

4. Can we use adversarial networks when the objective is non-differentiable?

5. Automatic formal verification of constructions with LEAN?

The key question. Are we still working on the 6-coloring?
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A copy of three pentagons, one triangle, three octagons and two hexagons together form the

building block of the first coloring that is illustrated in Figure 1 for three di↵erent valid choices

of d. Note that the triangle disappears as d approaches the upper end of the valid spectrum.

Looking at the overall construction in Figure 2, it is visually clear that the only conditions that

are at risk making this construction invalid are given be the following set of constraints:

3

Thank you!

Full paper is available at arxiv.org/abs/2404.05509.
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