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What is this talk about?
Introduction

Given P,Q compact convex sets,
does there exist x ∈ P ∩Q?

Why? At the core of many algorithms. Allows for optimization via binary search.

Today. von Neumann’s approach and a couple of new algorithms.

(Hyperlinked) References are not exhaustive; check references contained therein.
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Some trivial insights...
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Polytopes: H-representation and V-representation
Some trivial insights...

Example. (H-representation)

Let P = {x | APx ≤ bP} and Q = {x | AQx ≤ bQ} be polytopes. Then x ∈ P ∩Q?

Solution: Linear programming! Check feasibility of

P ∩Q = {x | APx ≤ bP ,AQx ≤ bQ}.

Example. (V-representation)

Let P = conv(U) and Q = conv(W) be polytopes. Then x ∈ P ∩Q?

Solution: Linear programming! Check feasibility of{
(𝜆, 𝜅) :

∑
u∈U

𝜆uu =

∑
w∈W

𝜅ww,
∑
u∈U

𝜆u =

∑
w∈W

𝜅w = 1,𝜆, 𝜅 ≥ 0

}
.
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More general setup
Some trivial insights...

What if access to P and Q is only given implicitly?

What if P and Q are more general, e.g., compact convex?
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von Neumann’s
Alternating Projections
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The algorithm
von Neumann’s Alternating Projections

Let P and Q be compact convex sets. ΠP ,ΠQ being the respective projectors.

Algorithm von Neumann’s Alternating Projections (POCS)

Input: Point y0 ∈ Rn, ΠP projector onto P ⊆ Rn and ΠQ projector onto Q ⊆ Rn.
Output: Iterates x1 , y1 . . . ∈ Rn

1: for t = 0 to . . . do
2: xt+1 ← ΠP(yt)
3: yt+1 ← ΠQ(xt+1)

appeared in lecture notes first distributed in 1933; see reprint [von Neumann, 1949]
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Convergence
von Neumann’s Alternating Projections

Suppose P ∩Q ≠ ∅ and let u ∈ P ∩Q. The binomial formula is your friend:

∥yt − u∥2

= ∥yt − xt+1 + xt+1 − u∥2 = ∥yt − xt+1∥2 + ∥xt+1 − u∥2 − 2
〈
xt+1 − yt , xt+1 − u

〉

︸                    ︷︷                    ︸
≤0

≥ ∥yt − xt+1∥2 + ∥xt+1 − u∥2 = ∥yt − xt+1∥2 + ∥xt+1 − yt+1 + yt+1 − u∥2

= ∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2 + ∥yt+1 − u∥2 − 2
〈
yt+1 − xt+1 , yt+1 − u

〉

︸                       ︷︷                       ︸
≤0

≥ ∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2 + ∥yt+1 − u∥2.

Rearrange to

∥yt − u∥2 − ∥yt+1 − u∥2 ≥ ∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2.

Whenever you see something like this, it is checkmate in 3 moves...
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Convergence
von Neumann’s Alternating Projections

Starting from

∥yt − u∥2 − ∥yt+1 − u∥2 ≥ ∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2.
1) Simply sum up∑

t=0,...,T−1

(
∥yt − u∥2 − ∥yt+1 − u∥2

)
≥

∑
t=0,...,T−1

(
∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2

)
.

2) which implies, via telescoping,

∥y0 − u∥2 ≥
∑

t=0,...,T−1

(
∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2

)
.

3) divide by T, then

∥y0 − u∥2
T

≥ 1
T

∑
t=0,...,T−1

(
∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2

)
≥ ∥xT − yT∥2 ,

as distances are non-increasing. □
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Convergence
von Neumann’s Alternating Projections

Proposition (von Neumann [1949] + minor perturbations)
Let P and Q be compact convex sets with P ∩Q ≠ ∅ and let x1 , y1 . . . , xT , yT ∈ Rn be the
sequence of iterates of von Neumann’s algorithm. Then the iterates converge: xt → x and yt → y
to some x ∈ P and y ∈ Q and

∥xT − yT∥2 ≤
1
T

T−1∑
t=0

(
∥yt − xt+1∥2 + ∥xt+1 − yt+1∥2

)
≤ dist(y0 , P ∩Q)2

T
.
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Projections are often expensive however...
von Neumann’s Alternating Projections

What if access to P and Q is only given by Linear Minimization Oracles (LMOs)?
(e.g., via combinatorial algorithm like matching algorithm)

Quick reminder. Linear minimization is often cheaper than projection (basically quadratic programming).
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Alternating Linear Minimizations
[Braun et al., 2022]
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von Neumann’s algorithm revisited
Alternating Linear Minimizations

After close inspection and some meditation,

von Neumann’s algorithm basically solves

min
(x,y)∈P×Q

∥x − y∥2 ,

i.e., we are minimizing the 2-norm over the product space P ×Q.

In principle. Any Frank-Wolfe algorithm to solve the problem (only LMOs for P and Q).
[Braun et al., 2025]

However. We want von Neumann style algorithm with alternations.

(Note. Above formulation might hint that acceleration is unlikely to be possible as condition number is 1.)
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The Cyclic Block-Coordinate Conditional Gradient algorithm
Alternating Linear Minimizations

Luckily, [Beck et al., 2015] already thought about this...

Algorithm Cyclic Block-Coordinate Conditional Gradient algorithm [Beck et al., 2015]

Input: Points x0
i ∈ Pi, LMO for Pi ⊆ Rni , i = 0, . . . , k − 1 and 0 < 𝛾0 , . . . , 𝛾t , . . . ≤ 1.

Output: Iterates x1 , . . . ∈ P0 × · · · × Pk−1

1: for t = 0 to . . . do
2: i← t mod k
3: vt ← argminx∈Pi

〈
∇Pi f (xt), x

〉
4: xt+1 ← xt + 𝛾t(vt − xt

i)[i]

Theorem (Convergence [Beck et al., 2015, cf Theorem 4.5])
Under standard assumptions

(primal) f (xkt) − f (x∗) ≤ 2
t + 2

(k−1∑
i=0

LiD2
i

2 + 2LD
k−1∑
i=0

Di

)
,

(dual) min
1≤t≤T

max
y∈P0×···×Pk−1

〈
∇f (xkt), xkt − y

〉
≤ 6.75

T + 2

(k−1∑
i=0

LiD2
i

2 + 2LD
k−1∑
i=0

Di

)
.

Note. Cyclic variant of stochastic BCFW [Lacoste-Julien et al., 2013]
Sebastian Pokutta · Alternating Linear Minimizations 13 / 31



Alternating Linear Minimization algorithm
Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points x0 ∈ P, y0 ∈ Q, LMO over P,Q ⊆ Rn

Output: Iterates x1 , y1 . . . ∈ Rn

1: for t = 0 to . . . do
2: ut ← argminx∈P

〈
xt − yt , x

〉
3: xt+1 ← xt + 2

t+2 · (ut − xt)
4: vt ← argminy∈Q

〈
yt − xt+1 , y

〉
5: yt+1 ← yt + 2

t+2 · (vt − yt)

Observe.
1. Trivial algorithm: von Neumann + Sliding = inexact projection via FW requiring

around O(1/t) FW steps per iteration.
2. Here: Single(!!) Frank-Wolfe step on projection problem per iteration.

Sebastian Pokutta · Alternating Linear Minimizations 14 / 31



Alternating Linear Minimization algorithm
Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points x0 ∈ P, y0 ∈ Q, LMO over P,Q ⊆ Rn

Output: Iterates x1 , y1 . . . ∈ Rn

1: for t = 0 to . . . do
2: ut ← argminx∈P

〈
xt − yt , x

〉
3: xt+1 ← xt + 2

t+2 · (ut − xt)
4: vt ← argminy∈Q

〈
yt − xt+1 , y

〉
5: yt+1 ← yt + 2

t+2 · (vt − yt)

Observe.
1. Trivial algorithm: von Neumann + Sliding = inexact projection via FW requiring

around O(1/t) FW steps per iteration.
2. Here: Single(!!) Frank-Wolfe step on projection problem per iteration.

Sebastian Pokutta · Alternating Linear Minimizations 14 / 31



Alternating Linear Minimization algorithm
Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points x0 ∈ P, y0 ∈ Q, LMO over P,Q ⊆ Rn

Output: Iterates x1 , y1 . . . ∈ Rn

1: for t = 0 to . . . do
2: ut ← argminx∈P

〈
xt − yt , x

〉
3: xt+1 ← xt + 2

t+2 · (ut − xt)
4: vt ← argminy∈Q

〈
yt − xt+1 , y

〉
5: yt+1 ← yt + 2

t+2 · (vt − yt)

Observe.
1. Trivial algorithm: von Neumann + Sliding = inexact projection via FW requiring

around O(1/t) FW steps per iteration.
2. Here: Single(!!) Frank-Wolfe step on projection problem per iteration.
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Convergence Guarantee
Alternating Linear Minimizations

Proposition (Intersection of two sets)
Let P and Q be compact convex sets. Then ALM generates iterates zt � 1

2 (xt + yt), such that

max{dist(zt , P)2 , dist(zt ,Q)2} ≤
∥xt − yt∥2

4 ≤
(1 + 2

√
2)(D2

P +D2
Q)

t + 2 + dist(P,Q)2
4

min
1≤t≤T

max
x∈P,y∈Q

∥xt − yt∥2 −
〈
xt − yt , x − y

〉
≤ 6.75(1 + 2

√
2)

T + 2 (D2
P +D2

Q).

Note. Rate is optimal, take P = Δn and Q = {0} ⇒ standard lower bound for FW methods.

Remark (Comparison to von Neumann’s alternating projection algorithm)
For simplicity let us consider the case where P ∩Q ≠ ∅.
After minor reformulation, von Neumann’s alternating projection method yields:

min
t=0,...,T−1

max{dist(zt+1 , P)2 , dist(zt+1 ,Q)2} ≤
dist(y0 , P ∩Q)2

T
.

Alternating Linear Minimization yields:

max{dist(zT , P)2 , dist(zT ,Q)2} ≤
(1 + 2

√
2)(D2

P +D2
Q)

T + 2 .
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All done?

We have been cheating however...

Alternating Linear Minimizations

Both von Neumann’s algorithm and ALM only approximately decide x ∈ P ∩Q!

For general compact convex sets this is as good as it gets but for polytopes?
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Alternating Linear Minimizations for Polytopes
[Braun et al., 2022]
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A simply observation
Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)
Let P,Q ⊆ Rn be polytopes. There exists 𝜀PQ > 0, so that for all U ⊆ vert(P),V ⊆ vert(Q)
with dist(conv(U), conv(V)) < 𝜀PQ, it holds conv(U) ∩ conv(V) ≠ ∅.

Proof.
Follows from the fact that polytopes having only a finite number of vertices:

𝜀PQ B min{dist(conv(U), conv(V)) : U ⊆ vert(P),V ⊆ vert(Q), conv(U) ∩ conv(V) = ∅}.
□

Of course we do not know 𝜀PQ ahead of time...
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Another simple observation
Alternating Linear Minimizations for Polytopes

Observation (Recovery of x ∈ P ∩Q by linear programming)
Assume xt and yt with ∥xt − yt∥ < 𝜀PQ via ALM.

Let U ⊆ vert(P) be all extreme points returned by the LMO for P throughout the execution of
ALM and define V ⊆ vert(Q) accordingly. From Observation: conv(U) ∩ conv(V) ≠ ∅.
Solve linear feasibility program ∑

u∈U
𝜆uu =

∑
v∈V

𝜅uv∑
u∈U

𝜆u = 1,
∑
v∈V

𝜅u = 1

𝜆 ≥ 0, 𝜅 ≥ 0,

to obtain
x B

∑
u∈U

𝜆uu =

∑
v∈V

𝜅uv ∈ P ∩Q.
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An exact algorithm
Alternating Linear Minimizations for Polytopes

Algorithm Alternating Linear Minimizations (ALM) [exact version]

Input: Points x0 ∈ P, y0 ∈ Q, LMO over P,Q ⊆ Rn

Output: Iterates x1 , y1 . . . ∈ Rn

1: for t = 0 to . . . do
2: ut ← argminx∈P

〈
xt − yt , x

〉
3: xt+1 ← xt + 2

t+2 · (ut − xt)
4: vt ← argminy∈Q

〈
yt − xt+1 , y

〉
5: yt+1 ← yt + 2

t+2 · (vt − yt)
6: if t = 2k for some k then
7: if minx∈P,y∈Q

〈
xt+1 − yt+1 , x − y

〉
> 0 then

8: return “disjoint” and certificate
〈
xt+1 − yt+1 , x − y

〉
> 0

9: else
10: Solve linear feasibility program.
11: if feasible then
12: return a solution x ∈ P ∩Q
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An exact algorithm: Guarantees
Alternating Linear Minimizations for Polytopes

Basically we pay a factor of 2 in iterations for making exact.

Proposition (Exact variant)
Let P,Q be polytopes with diameters Dp and DQ, respectively. Executing exact ALM variant:

1. If P ∩Q ≠ ∅, then after no more than

16(1 + 2
√

2)(D2
P +D2

Q)

𝜀2
PQ

block-LMO calls, the algorithm returns x ∈ P ∩Q.
2. If P ∩Q = ∅, then after no more than

16(1 + 2
√

2)(D2
P +D2

Q)
(DP +DQ)2

dist(P,Q)4

block-LMO calls the algorithm certifies P ∩Q = ∅.

Note. We counted the resolution of one feasibility LP as one block-LMO.
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How bad can it be?
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Bounds on minimal distance
How bad can it be?

The minimal possible distance dist(P,Q) can be actually quite bad.

[Deza et al., 2024]

Theorem
If P and Q are disjoint lattice (d, k)-polytopes, then

1
(kd)2d ≤ dist(P,Q),

and for any large enough d, there exist two disjoint (d, k)-lattice polytopes P and Q such that

dist(P,Q) ≤ 1(
k
√

d
)√d

.

⇒ In case of disjoint polytopes running time can be as bad as

Ω

( (
k
√

d
)4
√

d
)
.

⇒ Bad news for our algorithms.
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Can we do better?
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Advanced FW algorithms over polytopes
Can we do better?

AFW, PCG, BCG, BPCG, etc. can solve

min
x∈P

f (x),

to accuracy 𝜀 in roughly

𝒪
(
LD2

𝜇𝛿2 log 1
𝜀

)
iterations, for f being L-smooth and 𝜇-PL over a polytope P with pyramidal width 𝛿.

Note. Exponentially better dependence on 𝜀.

Recall. Our problem can be formulated as

min
(x,y)∈P×Q

∥x − y∥2 ,

which is 1-smooth and 1-PL (basically "like" strong-convexity).
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Pyramidal width Over Products
Can we do better?

With a little bit of geometric reasoning we can show: [Iommazzo et al., 2026]

Theorem (Pyramidal width of the product)
Let 𝛿P and 𝛿Q be the pyramidal widths of polytopes P,Q ⊆ Rn. Then,

𝛿P×Q =

√√√√ 𝛿2
P𝛿

2
Q

𝛿2
P + 𝛿2

Q
.

Corollary (Useful lower bound for the pyramidal width of the product)
The pyramidal width of product polytope P =

∏
i∈[k] Pi is at least

𝛿P = Ω

{
1√
k

min
i∈[k]

𝛿Pi

}
with 𝛿Pi being pyramidal width of Pi; bound is essentially tight when one pyramidal width is
much smaller than the others.
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Putting it all together
Can we do better?

[Iommazzo et al., 2026]
Proposition (Faster exact variant)
Let P,Q be polytopes with diameters Dp and DQ, respectively. Executing exact ALM variant
with AFW, PCG, BCG, BPCG, etc. steps:

1. If P ∩Q ≠ ∅, then the algorithm returns x ∈ P ∩Q in

𝒪
(

D2
PD2

Q

min{𝛿P , 𝛿Q}2
log 1

𝜀PQ

)
.

2. If P ∩Q = ∅, then the algorithm certifies P ∩Q = ∅ in

𝒪
(

D2
PD2

Q

min{𝛿P , 𝛿Q}2
log 1

dist(P,Q)

)
.

Note. DP ,DQ , 𝛿P , 𝛿Q are translation invariant and only depend on P and Q, respectively.

Worst-case example from before. Running time reduces to

𝒪
(

D2
PD2

Q

min{𝛿P , 𝛿Q}2
√

d log k
√

d

)
.
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Outlook
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Integrating LP solving into convex optimization is very powerful
Outlook

[Halbey et al., 2025]

In Entanglement Detection, Sliding, Splitting, etc. we encounter quadratic programs.

⇒ First-order optimality system is a linear program!

Integration of LP solving into convex optimization is very powerful.

Sebastian Pokutta · Alternating Linear Minimizations 29 / 31



Integrating LP solving into convex optimization is very powerful
Outlook

[Halbey et al., 2025]

In Entanglement Detection, Sliding, Splitting, etc. we encounter quadratic programs.

⇒ First-order optimality system is a linear program!

Integration of LP solving into convex optimization is very powerful.

Sebastian Pokutta · Alternating Linear Minimizations 29 / 31



If you want to learn more...

Thank you!

  MOS-SIAM Series on Optimization
9 7 8 1 6 1 1 9 7 8 5 5 1

9 0 0 0 0
ISBN: 978-1-61197-855-1

NOT THE REAL COPY, FOR POSITION ONLY. This concise, self-contained volume introduces convex 
analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-
edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and 
FISTA—that have applications in machine learning, signal processing, image reconstruction, and other 
fields. 

An Introduction to Convexity, Optimization, and Algorithms contains
• algorithms illustrated by Julia examples,
• more than 200 exercises that enhance the reader’s understanding of the topics, and
• clear explanations and step-by-step algorithmic descriptions that facilitate self-study for individuals 

looking to enhance their expertise in convex analysis and optimization.

Designed for courses in convex analysis, numerical optimization, and related subjects, this 
volume is intended for undergraduate and graduate students in mathematics, computer science, 
and engineering. Its concise length makes it ideal for a one-semester course. Researchers and 
professionals in applied areas, such as data science and machine learning, will find insights relevant 
to their work.is an Assistant Professor in the Department of Combinatorics and Optimization, 
University of Waterloo, Canada. Her research interests lie in convex analysis and optimization 
professionals in applied areas, such as data science and machine learning, will find insights relevant 
to their work.is an Assistant Professor in the Department of Combinatorics and Optimization, 
University of Waterloo, Canada. Her research interests lie in convex analysis and optimization 
algorithms, particularly splitting algorithms. In 2022, she was awarded the Ontario Early Researcher 
Award.
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