Splitting algorithms via Linear Optimization Oracles

Sebastian Pokutta

joint work with: M. Besançon, G. Braun, F. Criado, A. Deza, S. Designolle, I. Halbey, G. Iommazzo, D. Martínez-Rubio, S. Onn, L. Pournin, S. Rakotomandimby, R. Weismantel, E. Wirth, and Z. Woodstock, in various combinations.

Technische Universität Berlin and Zuse Institute Berlin

pokutta@math.tu-berlin.de @spokutta

Discrete Optimization. A conference in honor of Robert Weismantel

September 11th, 2025 · Zurich, Switzerland

What is this talk about?

Introduction

Given P, Q compact convex sets, does there exist $x \in P \cap Q$?

Given P, Q compact convex sets, does there exist $x \in P \cap Q$?

Why? At the core of many algorithms. Allows for optimization via binary search.

What is this talk about?

Given P, Q compact convex sets, does there exist $x \in P \cap Q$?

Why? At the core of many algorithms. Allows for optimization via binary search.

Today. von Neumann's approach and a couple of new algorithms.

(Hyperlinked) References are not exhaustive; check references contained therein.

Some trivial insights...

Example. (*H*-representation)

Let $P = \{x \mid A_P x \le b_P\}$ and $Q = \{x \mid A_Q x \le b_Q\}$ be polytopes. Then $x \in P \cap Q$?

Example. (*H*-representation)

Let
$$P = \{x \mid A_P x \le b_P\}$$
 and $Q = \{x \mid A_Q x \le b_Q\}$ be polytopes. Then $x \in P \cap Q$?

Solution: Linear programming! Check feasibility of

$$P \cap Q = \{x \mid A_P x \le b_P, A_Q x \le b_Q\}.$$

Example. (*H*-representation)

Let
$$P = \{x \mid A_P x \le b_P\}$$
 and $Q = \{x \mid A_Q x \le b_Q\}$ be polytopes. Then $x \in P \cap Q$?

Solution: Linear programming! Check feasibility of

$$P \cap Q = \{x \mid A_P x \le b_P, A_Q x \le b_Q\}.$$

Example. (*V*-representation)

Let P = conv(U) and Q = conv(W) be polytopes. Then $x \in P \cap Q$?

Example. (*H*-representation)

Let $P = \{x \mid A_P x \le b_P\}$ and $Q = \{x \mid A_Q x \le b_Q\}$ be polytopes. Then $x \in P \cap Q$?

Solution: Linear programming! Check feasibility of

$$P \cap Q = \{x \mid A_P x \le b_P, A_Q x \le b_Q\}.$$

Example. (*V*-representation)

Let P = conv(U) and Q = conv(W) be polytopes. Then $x \in P \cap Q$?

Solution: Linear programming! Check feasibility of

$$\left\{ (\lambda,\kappa) : \sum_{u \in U} \lambda_u u = \sum_{w \in W} \kappa_w w, \sum_{u \in U} \lambda_u = \sum_{w \in W} \kappa_w = 1, \lambda, \kappa \geq 0 \right\}.$$

What if access to *P* and *Q* is only given implicitly?

What if access to *P* and *Q* is only given implicitly?

What if P and Q are more general, e.g., compact convex?

von Neumann's Alternating Projections

The algorithm

von Neumann's Alternating Projections

Let *P* and *Q* be compact convex sets. Π_P , Π_Q being the respective projectors.

Algorithm von Neumann's Alternating Projections (POCS)

Input: Point $y_0 \in \mathbb{R}^n$, Π_P projector onto $P \subseteq \mathbb{R}^n$ and Π_Q projector onto $Q \subseteq \mathbb{R}^n$. **Output:** Iterates $x_1, y_1 \dots \in \mathbb{R}^n$

- 1: **for** t = 0 **to** . . . **do**
- 2: $x_{t+1} \leftarrow \Pi_P(y_t)$
- 3: $y_{t+1} \leftarrow \Pi_O(x_{t+1})$

appeared in lecture notes first distributed in 1933; see reprint [von Neumann, 1949]

von Neumann's Alternating Projections

$$||y_t - u||^2$$

von Neumann's Alternating Projections

$$\|y_t - u\|^2 = \|y_t - x_{t+1} + x_{t+1} - u\|^2 = \|y_t - x_{t+1}\|^2 + \|x_{t+1} - u\|^2 - 2\left\langle x_{t+1} - y_t, x_{t+1} - u\right\rangle$$

von Neumann's Alternating Projections

$$||y_t - u||^2 = ||y_t - x_{t+1} + x_{t+1} - u||^2 = ||y_t - x_{t+1}||^2 + ||x_{t+1} - u||^2 - 2\underbrace{\langle x_{t+1} - y_t, x_{t+1} - u \rangle}_{\leq 0}$$

von Neumann's Alternating Projections

$$||y_{t} - u||^{2} = ||y_{t} - x_{t+1} + x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} - 2\underbrace{\langle x_{t+1} - y_{t}, x_{t+1} - u \rangle}_{\leq 0}$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2}$$

von Neumann's Alternating Projections

$$||y_{t} - u||^{2} = ||y_{t} - x_{t+1} + x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} - 2\underbrace{\langle x_{t+1} - y_{t}, x_{t+1} - u \rangle}_{\leq 0}$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1} + y_{t+1} - u||^{2}$$

von Neumann's Alternating Projections

$$||y_{t} - u||^{2} = ||y_{t} - x_{t+1} + x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} - 2\underbrace{\langle x_{t+1} - y_{t}, x_{t+1} - u \rangle}_{\leq 0}$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1} + y_{t+1} - u||^{2}$$

$$= ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2} - 2\langle y_{t+1} - x_{t+1}, y_{t+1} - u \rangle$$

von Neumann's Alternating Projections

$$||y_{t} - u||^{2} = ||y_{t} - x_{t+1} + x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} - 2\underbrace{\langle x_{t+1} - y_{t}, x_{t+1} - u \rangle}_{\leq 0}$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1} + y_{t+1} - u||^{2}$$

$$= ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2} - 2\underbrace{\langle y_{t+1} - x_{t+1}, y_{t+1} - u \rangle}_{\leq 0}$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2}.$$

von Neumann's Alternating Projections

Suppose $P \cap Q \neq \emptyset$ and let $u \in P \cap Q$. The binomial formula is your friend:

$$||y_{t} - u||^{2} = ||y_{t} - x_{t+1} + x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} - 2 \langle x_{t+1} - y_{t}, x_{t+1} - u \rangle$$

$$\leq 0$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1} + y_{t+1} - u||^{2}$$

$$= ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2} - 2 \langle y_{t+1} - x_{t+1}, y_{t+1} - u \rangle$$

$$\leq 0$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2}.$$

Rearrange to

$$||y_t - u||^2 - ||y_{t+1} - u||^2 \ge ||y_t - x_{t+1}||^2 + ||x_{t+1} - y_{t+1}||^2.$$

von Neumann's Alternating Projections

Suppose $P \cap Q \neq \emptyset$ and let $u \in P \cap Q$. The binomial formula is your friend:

$$||y_{t} - u||^{2} = ||y_{t} - x_{t+1} + x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} - 2 \langle x_{t+1} - y_{t}, x_{t+1} - u \rangle$$

$$\leq 0$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - u||^{2} = ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1} + y_{t+1} - u||^{2}$$

$$= ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2} - 2 \langle y_{t+1} - x_{t+1}, y_{t+1} - u \rangle$$

$$\leq 0$$

$$\geq ||y_{t} - x_{t+1}||^{2} + ||x_{t+1} - y_{t+1}||^{2} + ||y_{t+1} - u||^{2}.$$

Rearrange to

$$\|y_t - u\|^2 - \|y_{t+1} - u\|^2 \ge \|y_t - x_{t+1}\|^2 + \|x_{t+1} - y_{t+1}\|^2.$$

Whenever you see something like this, it is checkmate in 3 moves...

von Neumann's Alternating Projections

Starting from

$$||y_t - u||^2 - ||y_{t+1} - u||^2 \ge ||y_t - x_{t+1}||^2 + ||x_{t+1} - y_{t+1}||^2.$$

1) Simply sum up

$$\sum_{t=0,\dots,T-1} \left(\|y_t - u\|^2 - \|y_{t+1} - u\|^2 \right) \geq \sum_{t=0,\dots,T-1} \left(\|y_t - x_{t+1}\|^2 + \|x_{t+1} - y_{t+1}\|^2 \right).$$

2) which implies, via telescoping,

$$||y_0 - u||^2 \ge \sum_{t=0,...,T-1} (||y_t - x_{t+1}||^2 + ||x_{t+1} - y_{t+1}||^2).$$

3) divide by *T*, then

$$\frac{\|y_0 - u\|^2}{T} \geq \frac{1}{T} \sum_{t = 0, \dots, T-1} \left(\|y_t - x_{t+1}\|^2 + \|x_{t+1} - y_{t+1}\|^2 \right) \geq \|x_T - y_T\|^2,$$

as distances are non-increasing.

von Neumann's Alternating Projections

Proposition (von Neumann [1949] + minor perturbations)

Let P and Q be compact convex sets with $P \cap Q \neq \emptyset$ and let $x_1, y_1, \dots, x_T, y_T \in \mathbb{R}^n$ be the sequence of iterates of von Neumann's algorithm. Then the iterates converge: $x_t \to x$ and $y_t \to y$ to some $x \in P$ and $y \in Q$ and

$$||x_T - y_T||^2 \le \frac{1}{T} \sum_{t=0}^{T-1} \left(||y_t - x_{t+1}||^2 + ||x_{t+1} - y_{t+1}||^2 \right) \le \frac{\operatorname{dist}(y_0, P \cap Q)^2}{T}.$$

Projections are often expensive however on Neumann's Alternating Projections
What if access to <i>P</i> and <i>Q</i> is only given by Linear Minimization Oracles (LMOs)? (e.g., via combinatorial algorithm like matching algorithm)
Quick reminder. Linear minimization is often cheaper than projection (basically quadratic programming).

Alternating Linear Minimizations

[Braun et al., 2022]

von Neumann's algorithm revisited Alternating Linear Minimizations

After close inspection and some meditation,

von Neumann's algorithm revisited

Alternating Linear Minimizations

After close inspection and some meditation, von Neumann's algorithm basically solves

$$\min_{(x,y)\in P\times Q}\|x-y\|^2,$$

i.e., we are minimizing the 2-norm over the product space $P \times Q$.

von Neumann's algorithm revisited

Alternating Linear Minimizations

After close inspection and some meditation, von Neumann's algorithm basically solves

$$\min_{(x,y)\in P\times Q} \|x-y\|^2,$$

i.e., we are minimizing the 2-norm over the product space $P \times Q$.

In principle. Any Frank-Wolfe algorithm to solve the problem (only LMOs for P and Q).

[Braun et al., 2025]

von Neumann's algorithm revisited

Alternating Linear Minimizations

After close inspection and some meditation, von Neumann's algorithm basically solves

$$\min_{(x,y)\in P\times Q}\|x-y\|^2,$$

i.e., we are minimizing the 2-norm over the product space $P \times Q$.

In principle. Any Frank-Wolfe algorithm to solve the problem (only LMOs for *P* and *Q*).

[Braun et al., 2025]

However. We want von Neumann style algorithm with alternations.

(Note. Above formulation might hint that acceleration is unlikely to be possible as condition number is 1.)

The Cyclic Block-Coordinate Conditional Gradient algorithm

Alternating Linear Minimizations

Luckily, [Beck et al., 2015] already thought about this...

Algorithm Cyclic Block-Coordinate Conditional Gradient algorithm [Beck et al., 2015]

Input: Points $x_i^0 \in P_i$, LMO for $P_i \subseteq \mathbb{R}^{n_i}$, i = 0, ..., k-1 and $0 < \gamma_0, ..., \gamma_t, ... \le 1$. **Output:** Iterates $x^1, ... \in P_0 \times \cdots \times P_{k-1}$

- 1: **for** t = 0 **to** . . . **do**
- 2: $i \leftarrow t \mod k$
- 3: $v^t \leftarrow \operatorname{argmin}_{x \in P_i} \langle \nabla_{P_i} f(x^t), x \rangle$
- 4: $x^{t+1} \leftarrow x^t + \gamma_t (v^t x_i^t)_{[i]}$

Theorem (Convergence [Beck et al., 2015, cf Theorem 4.5])

Under standard assumptions

$$(primal) \quad f(x^{kt}) - f(x^*) \le \frac{2}{t+2} \left(\sum_{i=0}^{k-1} \frac{L_i D_i^2}{2} + 2LD \sum_{i=0}^{k-1} D_i \right),$$

(dual)
$$\min_{1 \le t \le T} \max_{y \in P_0 \times \dots \times P_{k-1}} \left\langle \nabla f(x^{kt}), x^{kt} - y \right\rangle \le \frac{6.75}{T+2} \left(\sum_{i=0}^{k-1} \frac{L_i D_i^2}{2} + 2LD \sum_{i=0}^{k-1} D_i \right).$$

Note. Cyclic variant of stochastic BCFW [Lacoste-Julien et al., 2013]

Alternating Linear Minimization algorithm

Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Alternating Linear Minimization algorithm

Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points $x_0 \in P$, $y_0 \in Q$, LMO over P, $Q \subseteq \mathbb{R}^n$ **Output:** Iterates $x_1, y_1 \dots \in \mathbb{R}^n$

- 1: **for** t = 0 **to** . . . **do**
- 2: $u_t \leftarrow \operatorname{argmin}_{x \in P} \langle x_t y_t, x \rangle$
- 3: $x_{t+1} \leftarrow x_t + \frac{2}{t+2} \cdot (u_t x_t)$
- 4: $v_t \leftarrow \operatorname{argmin}_{y \in Q} \langle y_t x_{t+1}, y \rangle$
- 5: $y_{t+1} \leftarrow y_t + \frac{2}{t+2} \cdot (v_t y_t)$

Alternating Linear Minimization algorithm

Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points $x_0 \in P$, $y_0 \in Q$, LMO over $P, Q \subseteq \mathbb{R}^n$ **Output:** Iterates $x_1, y_1 \dots \in \mathbb{R}^n$

- 1: **for** t = 0 **to** . . . **do**
- 2: $u_t \leftarrow \operatorname{argmin}_{x \in P} \langle x_t y_t, x \rangle$
- 3: $x_{t+1} \leftarrow x_t + \frac{2}{t+2} \cdot (u_t x_t)$
- 4: $v_t \leftarrow \operatorname{argmin}_{y \in Q} \langle y_t x_{t+1}, y \rangle$
- 5: $y_{t+1} \leftarrow y_t + \frac{2}{t+2} \cdot (v_t y_t)$

Observe.

- 1. Trivial algorithm: von Neumann + Sliding = inexact projection via FW requiring around O(1/t) FW steps per iteration.
- 2. Here: Single(!!) Frank-Wolfe step on projection problem per iteration.

Convergence Guarantee

Alternating Linear Minimizations

Proposition (Intersection of two sets)

Let P and Q be compact convex sets. Then ALM generates iterates $z_t = \frac{1}{2}(x_t + y_t)$, such that

$$\max\{\operatorname{dist}(z_t, P)^2, \operatorname{dist}(z_t, Q)^2\} \leq \frac{\|x_t - y_t\|^2}{4} \leq \frac{(1 + 2\sqrt{2})(D_P^2 + D_Q^2)}{t + 2} + \frac{\operatorname{dist}(P, Q)^2}{4}$$

$$\min_{1 \leq t \leq T} \max_{x \in P, y \in Q} \|x_t - y_t\|^2 - \left\langle x_t - y_t, x - y \right\rangle \leq \frac{6.75(1 + 2\sqrt{2})}{T + 2} (D_P^2 + D_Q^2).$$

Convergence Guarantee

Alternating Linear Minimizations

Proposition (Intersection of two sets)

Let P and Q be compact convex sets. Then ALM generates iterates $z_t = \frac{1}{2}(x_t + y_t)$, such that

$$\max\{\operatorname{dist}(z_t, P)^2, \operatorname{dist}(z_t, Q)^2\} \leq \frac{\|x_t - y_t\|^2}{4} \leq \frac{(1 + 2\sqrt{2})(D_P^2 + D_Q^2)}{t + 2} + \frac{\operatorname{dist}(P, Q)^2}{4}$$

$$\min_{1 \leq t \leq T} \max_{x \in P, y \in Q} \|x_t - y_t\|^2 - \left\langle x_t - y_t, x - y \right\rangle \leq \frac{6.75(1 + 2\sqrt{2})}{T + 2} (D_P^2 + D_Q^2).$$

Note. Rate is optimal, take $P = \Delta_n$ and $Q = \{0\} \Rightarrow$ standard lower bound for FW methods.

Convergence Guarantee

Alternating Linear Minimizations

Proposition (Intersection of two sets)

Let P and Q be compact convex sets. Then ALM generates iterates $z_t = \frac{1}{2}(x_t + y_t)$, such that

$$\max\{\operatorname{dist}(z_t, P)^2, \operatorname{dist}(z_t, Q)^2\} \leq \frac{\|x_t - y_t\|^2}{4} \leq \frac{(1 + 2\sqrt{2})(D_P^2 + D_Q^2)}{t + 2} + \frac{\operatorname{dist}(P, Q)^2}{4}$$

$$\min_{1 \leq t \leq T} \max_{x \in P, y \in Q} \|x_t - y_t\|^2 - \left\langle x_t - y_t, x - y \right\rangle \leq \frac{6.75(1 + 2\sqrt{2})}{T + 2} (D_P^2 + D_Q^2).$$

Note. Rate is optimal, take $P = \Delta_n$ and $Q = \{0\} \Rightarrow$ standard lower bound for FW methods.

Remark (Comparison to von Neumann's alternating projection algorithm)

For simplicity let us consider the case where $P \cap Q \neq \emptyset$.

After minor reformulation, von Neumann's alternating projection method yields:

$$\min_{t=0,...,T-1} \max\{ \operatorname{dist}(z_{t+1}, P)^2, \operatorname{dist}(z_{t+1}, Q)^2 \} \le \frac{\operatorname{dist}(y_0, P \cap Q)^2}{T}.$$

Alternating Linear Minimization yields:

$$\max\{\operatorname{dist}(z_T, P)^2, \operatorname{dist}(z_T, Q)^2\} \leq \frac{(1 + 2\sqrt{2})(D_P^2 + D_Q^2)}{T + 2}.$$
Sebastian Pokutta · Splitting algorithms

All done? Alternating Linear Minimizations

Alternating Linear	Minimizations					
Both von N	Jeumann's algo	orithm and A	LM only appı	oximately dec	cide $x \in P \cap Q$!	

All done? We have been cheating however...

All done? We have been cheating however Alternating Linear Minimizations
Both von Neumann's algorithm and ALM only approximately decide $x \in P \cap Q$!
For general compact convex sets this is as good as it gets but for polytopes?

Alternating Linear Minimizations for Polytopes

[Braun et al., 2022]

A simply observation

Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)

Let $P, Q \subseteq \mathbb{R}^n$ be polytopes. There exists $\varepsilon_{PQ} > 0$, so that for all $U \subseteq \text{vert}(P)$, $V \subseteq \text{vert}(Q)$ with $\text{dist}(\text{conv}(U), \text{conv}(V)) < \varepsilon_{PQ}$, it holds $\text{conv}(U) \cap \text{conv}(V) \neq \emptyset$.

A simply observation

Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)

Let $P, Q \subseteq \mathbb{R}^n$ be polytopes. There exists $\varepsilon_{PQ} > 0$, so that for all $U \subseteq \text{vert}(P)$, $V \subseteq \text{vert}(Q)$ with $\text{dist}(\text{conv}(U), \text{conv}(V)) < \varepsilon_{PO}$, it holds $\text{conv}(U) \cap \text{conv}(V) \neq \emptyset$.

Proof.

Follows from the fact that polytopes having only a finite number of vertices:

$$\varepsilon_{PQ} := \min\{\operatorname{dist}(\operatorname{conv}(U), \operatorname{conv}(V)) : U \subseteq \operatorname{vert}(P), V \subseteq \operatorname{vert}(Q), \operatorname{conv}(U) \cap \operatorname{conv}(V) = \emptyset\}.$$

A simply observation

Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)

Let $P, Q \subseteq \mathbb{R}^n$ be polytopes. There exists $\varepsilon_{PQ} > 0$, so that for all $U \subseteq \text{vert}(P)$, $V \subseteq \text{vert}(Q)$ with $\text{dist}(\text{conv}(U), \text{conv}(V)) < \varepsilon_{PQ}$, it holds $\text{conv}(U) \cap \text{conv}(V) \neq \emptyset$.

Proof.

Follows from the fact that polytopes having only a finite number of vertices:

$$\varepsilon_{PQ} := \min\{\operatorname{dist}(\operatorname{conv}(U), \operatorname{conv}(V)) : U \subseteq \operatorname{vert}(P), V \subseteq \operatorname{vert}(Q), \operatorname{conv}(U) \cap \operatorname{conv}(V) = \emptyset\}.$$

Of course we do not know ε_{PO} ahead of time...

Another simple observation

Alternating Linear Minimizations for Polytopes

Observation (Recovery of $x \in P \cap Q$ by linear programming) Assume x_t and y_t with $||x_t - y_t|| < \varepsilon_{PQ}$ via ALM.

Another simple observation

Alternating Linear Minimizations for Polytopes

Observation (Recovery of $x \in P \cap Q$ by linear programming)

Assume x_t and y_t with $||x_t - y_t|| < \varepsilon_{PQ}$ via ALM.

Let $U \subseteq \text{vert}(P)$ be all extreme points returned by the LMO for P throughout the execution of ALM and define $V \subseteq \text{vert}(Q)$ accordingly. From Observation: $\text{conv}(U) \cap \text{conv}(V) \neq \emptyset$.

Another simple observation

Alternating Linear Minimizations for Polytopes

Observation (Recovery of $x \in P \cap Q$ by linear programming)

Assume x_t and y_t with $||x_t - y_t|| < \varepsilon_{PO}$ via ALM.

Let $U \subseteq \operatorname{vert}(P)$ be all extreme points returned by the LMO for P throughout the execution of ALM and define $V \subseteq \operatorname{vert}(Q)$ accordingly. From Observation: $\operatorname{conv}(U) \cap \operatorname{conv}(V) \neq \emptyset$.

Solve linear feasibility program

$$\sum_{u \in U} \lambda_u u = \sum_{v \in V} \kappa_u v$$

$$\sum_{u \in U} \lambda_u = 1, \sum_{v \in V} \kappa_u = 1$$

$$\lambda \ge 0, \kappa \ge 0,$$

to obtain

$$x := \sum_{u \in U} \lambda_u u = \sum_{v \in V} \kappa_u v \in P \cap Q.$$

An exact algorithm

Alternating Linear Minimizations for Polytopes

Algorithm Alternating Linear Minimizations (ALM) [exact version]

Input: Points $x_0 \in P$, $y_0 \in Q$, LMO over P, $Q \subseteq \mathbb{R}^n$ **Output:** Iterates $x_1, y_1 \dots \in \mathbb{R}^n$

```
1: for t = 0 to . . . do
        u_t \leftarrow \operatorname{argmin}_{x \in P} \langle x_t - y_t, x \rangle
         x_{t+1} \leftarrow x_t + \frac{2}{t+2} \cdot (u_t - x_t)
 3.
          v_t \leftarrow \operatorname{argmin}_{y \in O} \langle y_t - x_{t+1}, y \rangle
 4:
          y_{t+1} \leftarrow y_t + \frac{2}{t+2} \cdot (v_t - y_t)
 5:
          if t = 2^k for some k then
                if \min_{x \in P, y \in Q} \langle x_{t+1} - y_{t+1}, x - y \rangle > 0 then
 7:
                      return "disjoint" and certificate \langle x_{t+1} - y_{t+1}, x - y \rangle > 0
 8:
                 else
 9:
                      Solve linear feasibility program.
10:
                      if feasible then
11:
                            return a solution x \in P \cap Q
12:
```

An exact algorithm: Guarantees

Alternating Linear Minimizations for Polytopes

Basically we pay a factor of 2 in iterations for making exact.

Proposition (Exact variant)

Let P, Q be polytopes with diameters D_p and D_Q , respectively. Executing exact ALM variant:

1. If $P \cap Q \neq \emptyset$, then after no more than

$$\frac{16(1+2\sqrt{2})(D_{P}^{2}+D_{Q}^{2})}{\varepsilon_{PQ}^{2}}$$

block-LMO calls, the algorithm returns $x \in P \cap Q$.

2. If $P \cap Q = \emptyset$, then after no more than

$$16(1+2\sqrt{2})(D_P^2+D_Q^2)\frac{(D_P+D_Q)^2}{\text{dist}(P,Q)^4}$$

block-LMO calls the algorithm certifies $P \cap Q = \emptyset$.

Note. We counted the resolution of one feasibility LP as one block-LMO.

How bad can it be?

Bounds on minimal distance

How bad can it be?

The minimal possible distance dist(P, Q) can be actually quite bad.

Bounds on minimal distance

How bad can it be?

The minimal possible distance dist(P, Q) can be actually quite bad.

[Deza et al., 2024]

Theorem

If P and Q are disjoint lattice (d, k)-polytopes, then

$$\frac{1}{(kd)^{2d}} \le \operatorname{dist}(P, Q),$$

and for any large enough d, there exist two disjoint (d,k)-lattice polytopes P and Q such that

$$\operatorname{dist}(P,Q) \leq \frac{1}{(k\sqrt{d})^{\sqrt{d}}}.$$

Bounds on minimal distance

How bad can it be?

The minimal possible distance dist(P, Q) can be actually quite bad.

[Deza et al., 2024]

Theorem

If P and Q are disjoint lattice (d, k)-polytopes, then

$$\frac{1}{(kd)^{2d}} \le \operatorname{dist}(P, Q),$$

and for any large enough d, there exist two disjoint (d, k)-lattice polytopes P and Q such that

$$\operatorname{dist}(P,Q) \leq \frac{1}{(k\sqrt{d})^{\sqrt{d}}}.$$

⇒ In case of disjoint polytopes running time can be as bad as

$$\Omega\left((k\sqrt{d})^{4\sqrt{d}}\right).$$

 \Rightarrow Bad news for our algorithms.

Can we do better?

Advanced FW algorithms over polytopes

Can we do better?

AFW, PCG, BCG, BPCG, etc. can solve

$$\min_{x \in P} f(x),$$

to accuracy ε in roughly

$$O\left(\frac{LD^2}{\mu\delta^2}\log\frac{1}{\varepsilon}\right)$$

iterations, for f being L-smooth and μ -PL over a polytope P with pyramidal width δ .

Advanced FW algorithms over polytopes

AFW, PCG, BCG, BPCG, etc. can solve

$$\min_{x \in P} f(x),$$

to accuracy ε in roughly

$$O\left(\frac{LD^2}{\mu\delta^2}\log\frac{1}{\varepsilon}\right)$$

iterations, for f being L-smooth and μ -PL over a polytope P with pyramidal width δ .

Note. Exponentially better dependence on ε .

Advanced FW algorithms over polytopes

Can we do better?

AFW, PCG, BCG, BPCG, etc. can solve

$$\min_{x \in P} f(x),$$

to accuracy ε in roughly

$$O\left(\frac{LD^2}{\mu\delta^2}\log\frac{1}{\varepsilon}\right)$$

iterations, for f being L-smooth and μ -PL over a polytope P with pyramidal width δ .

Note. Exponentially better dependence on ε .

Recall. Our problem can be formulated as

$$\min_{(x,y)\in P\times Q} \|x-y\|^2,$$

which is 1-smooth and 1-PL (basically "like" strong-convexity).

Pyramidal width Over Products

Can we do better?

With a little bit of geometric reasoning we can show:

[Iommazzo et al., 2025]

Theorem (Pyramidal width of the product)

Let δ_P and δ_Q be the pyramidal widths of polytopes $P,Q\subseteq\mathbb{R}^n$. Then,

$$\delta_{P \times Q} = \sqrt{\frac{\delta_P^2 \delta_Q^2}{\delta_P^2 + \delta_Q^2}}.$$

Pyramidal width Over Products

Can we do better?

With a little bit of geometric reasoning we can show:

[Iommazzo et al., 2025]

Theorem (Pyramidal width of the product)

Let δ_P and δ_Q be the pyramidal widths of polytopes $P,Q\subseteq\mathbb{R}^n$. Then,

$$\delta_{P\times Q} = \sqrt{\frac{\delta_P^2 \delta_Q^2}{\delta_P^2 + \delta_Q^2}}.$$

Corollary (Useful lower bound for the pyramidal width of the product)

The pyramidal width of product polytope $P = \prod_{i \in [k]} P_i$ is at least

$$\delta_P = \Omega \left\{ \frac{1}{\sqrt{k}} \min_{i \in [k]} \delta_{P_i} \right\}$$

with $\delta_{\mathcal{P}_i}$ being pyramidal width of P_i ; bound is essentially tight when one pyramidal width is much smaller than the others.

Putting it all together

Can we do better?

[Iommazzo et al., 2025]

Proposition (Faster exact variant)

Let P,Q be polytopes with diameters D_p and D_Q , respectively. Executing exact ALM variant with AFW, PCG, BCG, BPCG, etc. steps:

1. If $P \cap Q \neq \emptyset$, then the algorithm returns $x \in P \cap Q$ in

$$O\left(\frac{D_P^2 D_Q^2}{\min\{\delta_P, \delta_Q\}^2} \log \frac{1}{\varepsilon_{PQ}}\right).$$

2. If $P \cap Q = \emptyset$, then the algorithm certifies $P \cap Q = \emptyset$ in

$$O\left(\frac{D_P^2 D_Q^2}{\min\{\delta_P, \delta_Q\}^2} \log \frac{1}{\operatorname{dist}(P, Q)}\right).$$

Note. D_P , D_Q , δ_P , δ_Q are translation invariant and only depend on P and Q, respectively.

Putting it all together

Can we do better?

[Iommazzo et al., 2025]

Proposition (Faster exact variant)

Let P, Q be polytopes with diameters D_p and D_Q , respectively. Executing exact ALM variant with AFW, PCG, BCG, BPCG, etc. steps:

1. If $P \cap Q \neq \emptyset$, then the algorithm returns $x \in P \cap Q$ in

$$O\left(\frac{D_P^2 D_Q^2}{\min\{\delta_P, \delta_Q\}^2} \log \frac{1}{\varepsilon_{PQ}}\right).$$

2. If $P \cap Q = \emptyset$, then the algorithm certifies $P \cap Q = \emptyset$ in

$$O\left(\frac{D_P^2 D_Q^2}{\min\{\delta_P, \delta_Q\}^2} \log \frac{1}{\operatorname{dist}(P, Q)}\right).$$

Note. D_P , D_Q , δ_P , δ_Q are translation invariant and only depend on P and Q, respectively. **Worst-case example from before.** Running time reduces to

$$O\left(\frac{D_p^2 D_Q^2}{\min\{\delta_P, \delta_Q\}^2} \sqrt{d} \log k \sqrt{d}\right).$$

Outlook

Integrating LP solving into convex optimization is very powerful

[Halbey et al., 2025]

In Entanglement Detection, Sliding, Splitting, etc. we encounter quadratic programs.

⇒ First-order optimality system is a linear program!

Integrating LP solving into convex optimization is very powerful Outlook

[Halbey et al., 2025]

In Entanglement Detection, Sliding, Splitting, etc. we encounter quadratic programs.

⇒ First-order optimality system is a linear program!

Integration of LP solving into convex optimization is very powerful.

If you want to learn more...

Thank you!

Conditional Gradient Methods

Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Sebastian Pokutta

> https://conditional-gradients.org/ https://arxiv.org/abs/2211.14103

to appear in MOS-SIAM Series on Optimization

References I

- A. Beck, E. Pauwels, and S. Sabach. The cyclic block conditional gradient method for convex optimization problems. SIAM Journal on Optimization, 25(4): 2024–2049, 2015. ISSN 1052-6234 (print); 1095-7189 (online). doi: 10.1137/15M1008397.
- G. Braun, S. Pokutta, and R. Weismantel. Alternating Linear Minimization: Revisiting von Neumann's alternating projections. preprint, 12 2022.
- G. Braun, A. Carderera, C. W. Combettes, H. Hassani, A. Karbasi, A. Mokthari, and S. Pokutta. Conditional Gradient Methods. to appear in MOS-SIAM Series on Optimization, 1 2025.
- A. Deza, S. Onn, S. Pokutta, and L. Pournin. Kissing polytopes. to appear in SIAM Journal on Discrete Mathematics, 7 2024.
- J. Halbey, S. Rakotomandimby, M. Besançon, S. Designolle, and S. Pokutta. Efficient Quadratic Corrections for Frank-Wolfe Algorithms. preprint, 6 2025.
- G. Iommazzo, D. Martínez-Rubio, F. Criado, E. Wirth, and S. Pokutta. Linear Convergence of the Frank-Wolfe Algorithm over Product Polytopes. preprint, 5 2025.
- S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe optimization for structural syms. In International Conference on Machine Learning, pages 53–61. PMLR, 2013.
- J. von Neumann. On rings of operators. reduction theory. Annals of Mathematics, pages 401-485, 1949.