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What is this talk about?

Introduction

Given P, Q compact convex sets,
does there exist x € PN Q?
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What is this talk about?

Introduction

Given P, Q compact convex sets,
does there exist x € PN Q?

Why? At the core of many algorithms. Allows for optimization via binary search.

Today. von Neumann’s approach and a couple of new algorithms.

(Hyperlinked) References are not exhaustive; check references contained therein.
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Some trivial insights...
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Polytopes: H-representation and V-representation

Some trivial insights...

Example. (H-representation)

Let P = {x| Apx < bp} and Q = {x | Agx < bp} be polytopes. Then x € P N Q?
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Example. (H-representation)
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Solution: Linear programming! Check feasibility of

PNQ={x| Apx < bp,Agx < bg}.
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Polytopes: H-representation and V-representation

Some trivial insights...

Example. (H-representation)
Let P = {x| Apx < bp} and Q = {x | Agx < bp} be polytopes. Then x € P N Q?

Solution: Linear programming! Check feasibility of

PNQ={x| Apx < bp,Agx < bg}.

Example. (V-representation)
Let P = conv(U) and Q = conv(W) be polytopes. Then x € P N Q?

Solution: Linear programming! Check feasibility of

{(/\,K):Z/\uu= Z wa,Z/\u = Z Kw=1,A,x > O}.

uel weW uel weW
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More general setup

Some trivial insights...

What if access to P and Q is only given implicitly?
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More general setup

Some trivial insights...

What if access to P and Q is only given implicitly?

What if P and Q are more general, e.g., compact convex?
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von Neumann'’s
Alternating Projections
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The algorithm

von Neumann’s Alternating Projections

Let P and Q be compact convex sets. Ilp, [1g being the respective projectors.

Algorithm von Neumann'’s Alternating Projections (POCS)

Input: Point yp € R", TIp projector onto P € R” and Il projector onto Q € R™.
Output: Iterates x1,y1... € R"
1: fort=0to... do

2 x4 < Tp(ye)
3 Yir1 < To(xes1)

appeared in lecture notes first distributed in 1933; see reprint [von Neumann, 1949]
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Convergence

von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2
lys —ull
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2 2 2 2
Ny — ull® = llye — xpsn + xee1 — ll® = ye — xell® + lxeen — ull® = 2 (1 — Y2, Xpe1 — 1)
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2 2
lye = ull® = Ny = X1 +xea1 = ull® = Ny = X1l + xee1 — ll® = 2 (xer1 — Yo, X1 — 11)

<0
2 2
2 |yt = xe1ll” + llxpn — ]
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2 2 2 2
Ny — ull® = llye — xpsn + xee1 — ll® = ye — xell® + lxeen — ull® = 2 (1 — Y2, Xpe1 — 1)

<0

2 2 2 2
>y = w17+ e — ull” = Nye = 211 + X041 = Y1 + Y1 — ull
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2 2 2 2
Ny — ull® = llye — xpsn + xee1 — ll® = ye — xell® + lxeen — ull® = 2 (1 — Y2, Xpe1 — 1)

<0
2 2 2 2
>y = w17+ e — ull” = Nye = 211 + X041 = Y1 + Y1 — ull

2 2 2
= llye = xpall® + 1 = yeeall® + e — ull® = 2 (o1 = Xea1, Yesr — 1)
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2 2
lye = ull® = Ny = X1 +xea1 = ull® = Ny = X1l + xee1 — ll® = 2 (xer1 — Yo, X1 — 11)

<0
2 2 2 2
> e = xepa 17+ llocrsr = ull” = lye = xeall” + 1 %ee1 — Yew1 + Yes1 — ull

2 2 2
= llye = xpall® + 1 = yeeall® + e — ull® = 2 (o1 = Xea1, Yesr — 1)

<0

> [lye = xpa1 I + 1241 = Yol + e — ull®.
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2 2 2 2
Ny — ull® = llye — xpsn + xee1 — ll® = ye — xell® + lxeen — ull® = 2 (1 — Y2, Xpe1 — 1)

<0
2 2 2 2
>y = w17+ e — ull” = Nye = 211 + X041 = Y1 + Y1 — ull

2 2 2
= llye = xpall® + 1 = yeeall® + e — ull® = 2 (o1 = Xea1, Yesr — 1)

<0

> [lye = xpa1 I + 1241 = Yol + e — ull®.

Rearrange to

2 2 2 2
Nlye = ull® = lyeer =l 2 lye = xpall” + 1041 = yesall™
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Convergence
von Neumann’s Alternating Projections

Suppose PN Q # 0 and let u € P N Q. The binomial formula is your friend:

2
lye = ull® = Ny = X1 +xea1 = ull® = Ny = X1l + xee1 — ll® = 2 (xer1 — Yo, X1 — 11)

<0
2 2 2 2
> e = xepa 17+ llocrsr = ull” = lye = xeall” + 1 %ee1 — Yew1 + Yes1 — ull

2 2 2
= llye = xpall® + 1 = yeeall® + e — ull® = 2 (o1 = Xea1, Yesr — 1)

<0

> [lye = xpa1 I + 1241 = Yol + e — ull®.

Rearrange to
2 2 2 2
ye = ull® = Myeer = ll® = My = xeeall” + 12041 = Yraall™
Whenever you see something like this, it is checkmate in 3 moves...
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Convergence

von Neumann’s Alternating Projections
Starting from

llye = ull® = llyesr = ull® = llye = xell® + 12601 = yeall
1) Simply sum up

> (=l =y =) =D (e = gl + e - yeal?)

t=0,...,T-1 t=0,...,T-1

2) which implies, via telescoping,

2 2 2
o —ul®> 3 (llys = xesal + lxesr = yraall?).

t=0,...,T-1
3) divide by T, then
llyo —ull> _ 1 2 2 2
e D (e = wal® + e = veal) > lar -yl
t=0,...,T-1
as distances are non-increasing. O
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Convergence

von Neumann’s Alternating Projections

Proposition (von Neumann [1949] + minor perturbations)

Let P and Q be compact convex sets with PN Q # @ and let x1,y1 ..., xT,yT € R" be the

sequernce of iterates of von Neumann'’s algorithm. Then the iterates converge: x;y — x and yy — y
to some x € Pand y € Q and

dist(yo, P N Q)

2
- <
lr —yrll” < -

i

T-1

2 2
D (e = xesall? +1xes1 = yraall?) <
t=0
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Projections are often expensive however...
von Neumann’s Alternating Projections

What if access to P and Q is only given by Linear Minimization Oracles (LMOs)?
(e.g., via combinatorial algorithm like matching algorithm)

Quick reminder. Linear minimization is often cheaper than projection (basically quadratic programming).
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Alternating Linear Minimizations

[Braun et al., 2022]
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von Neumann’s algorithm revisited
Alternating Linear Minimizations

After close inspection and some meditation,
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von Neumann'’s algorithm revisited
Alternating Linear Minimizations

After close inspection and some meditation, von Neumann’s algorithm basically solves

min ||x — }/Hz,

(x,y)ePxQ

i.e., we are minimizing the 2-norm over the product space P X Q.

Sebastian Pokutta - Splitting algorithms 12/31



von Neumann'’s algorithm revisited
Alternating Linear Minimizations

After close inspection and some meditation, von Neumann’s algorithm basically solves

min ||x — }/HZ,

(x,y)ePxQ

i.e., we are minimizing the 2-norm over the product space P X Q.

In principle. Any Frank-Wolfe algorithm to solve the problem (only LMOs for P and Q).

[Braun et al., 2025]
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von Neumann'’s algorithm revisited
Alternating Linear Minimizations

After close inspection and some meditation, von Neumann’s algorithm basically solves

min ||x — }/HZ,

(x,y)ePxQ

i.e., we are minimizing the 2-norm over the product space P X Q.
In principle. Any Frank-Wolfe algorithm to solve the problem (only LMOs for P and Q).
[Braun et al., 2025]

However. We want von Neumann style algorithm with alternations.

(Note. Above formulation might hint that acceleration is unlikely to be possible as condition number is 1.)

Sebastian Pokutta - Splitting algorithms 12/ 31



The Cyclic Block-Coordinate Conditional Gradient algorithm

Alternating Linear Minimizations

Luckily, [Beck et al., 2015] already thought about this...

Algorithm Cyclic Block-Coordinate Conditional Gradient algorithm [Beck et al., 2015]

Input: Points x € P,, LMO for P; C R",i= ., k=1and 0 < yp,.

oVt <L
Output: Iterates xl, . ePyx---x Py
1: fort=0to... do
2: i tmodk
3: o argmin, . p, (fo(xt), x>
4: xt“ — xt + yt(vt - Xf)[l]
Theorem (Convergence [Beck et al., 2015, cf Theorem 4.5])
Under standard assumptions k-1 2 1
(primal) f(xkt) —flx) < L Z i 2LDZ D;|,
+2 i=0 2 i=0

k-1 2 k-1
6.75 L;D;
dual min max <V Kkt ,xkt— >S L +2LD D;].
(@ual) 1<t<T yePox--XPy_1 F) Y . Z !

Note. Cyclic variant of stochastic BCFW [Lacoste-Julien et al., 2013]
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Alternating Linear Minimization algorithm

Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:
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Alternating Linear Minimization algorithm

Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points xg € P, yp € Q, LMO over P,Q C R"
Output: Iterates x1,y1... € R”

1: fort=0to... do

2 Ut < argmin,p <xt = yt,x>
3 Xyl X+ 25 (U — xp)
4
5

Ut — argminyeQ <yt = Xt41, y>
Yes1 < Y + 725 - (0 — Y1)
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Alternating Linear Minimization algorithm
Alternating Linear Minimizations

Specializing Cyclic Block Coordinate Conditional Gradients [Beck et al., 2015]:

Algorithm Alternating Linear Minimizations (ALM)

Input: Points xg € P, yp € Q, LMO over P,Q C R"
Output: Iterates x1,y1... € R”

1: fort=0to... do

2 Ut < argmin,p <xt = yt,x>
3 Xyl X+ 25 (U — xp)
4
5

Ut — argminyeQ <yt = Xt41, y>
Yes1 < Y + 725 - (0 — Y1)

Observe.

1. Trivial algorithm: von Neumann + Sliding = inexact projection via FW requiring
around O(1/t) FW steps per iteration.

2. Here: Single(!!) Frank-Wolfe step on projection problem per iteration.
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Convergence Guarantee
Alternating Linear Minimizations

Proposition (Intersection of two sets)

Let P and Q be compact convex sets. Then ALM generates iterates z; = %(xt + yt), such that

_2 A+2V2)D2+D%) g )
. . Xt — Yt P dist(P,
max{dist(zr, P, dist(zt, Q) < | . I — (4 -
. 6.75(1 +2V2)
12 = {xy — ) < 2 2
[min, ki =yl (xe =yt x—y) < ——————(Dp + DY)
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Convergence Guarantee
Alternating Linear Minimizations

Proposition (Intersection of two sets)
Let P and Q be compact convex sets. Then ALM generates iterates z; = %(xt + yt), such that
2 2
o —yl? (L +2VD05+D5)  dist(p, 0P
4 - t+2 4

_ 6.75(1 +2V2)
_ 2 _ _ < S\ =A
B v - by < T

max{dist(z;, P)?, dist(z:, Q)?} <

(D% + Dé).

Note. Rate is optimal, take P = Ay and Q = {0} = standard lower bound for FW methods.
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Convergence Guarantee
Alternating Linear Minimizations

Proposition (Intersection of two sets)

Let P and Q be compact convex sets. Then ALM generates iterates z; = %(xt + yt), such that
2 2
llxe — yt||2 . 1+ Zﬁ)(DP + DQ) N dist(P, Q)?
4 - t+2 4

_ 6.75(1 +2V2)
2
X — —Axt—yx—y) s ————
BBl i~ b <

max{dist(z;, P)?, dist(z;, Q)?} <

(D% + Dé).

Note. Rate is optimal, take P = Ay and Q = {0} = standard lower bound for FW methods.

Remark (Comparison to von Neumann's alternating projection algorithm)

For simplicity let us consider the case where PN Q # 0.
After minor reformulation, von Neumann’s alternating projection method yields:

diSt(yOI PN Q)2

in  max{dist(z41, P)?, dist(z;+1, Q)*} < T

t=0,...,T-1
Alternating Linear Minimization yields:
(1+2V2)(D3 + Dé)
max{dist(zr, P)?, dist(z7, Q)?} < =
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All done?

Alternating Linear Minimizations
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All done? We have been cheating however...

Alternating Linear Minimizations

Both von Neumann'’s algorithm and ALM only approximately decide x € PN Q!
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All done? We have been cheating however...

Alternating Linear Minimizations

Both von Neumann'’s algorithm and ALM only approximately decide x € PN Q!

For general compact convex sets this is as good as it gets but for polytopes?
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Alternating Linear Minimizations for Polytopes

[Braun et al., 2022]
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A simply observation

Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)

Let P,Q C R" be polytopes. There exists epg > 0, so that for all U C vert(P), V C vert(Q)
with dist(conv(U), conv(V)) < epg, it holds conv(U) N conv(V) # 0.
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A simply observation

Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)

Let P,Q C R" be polytopes. There exists epg > 0, so that for all U C vert(P), V C vert(Q)
with dist(conv(U), conv(V)) < epq, it holds conv(U) N conv(V) # 0.

Proof.
Follows from the fact that polytopes having only a finite number of vertices:

epg = min{dist(conv(U), conv(V)) : U C vert(P), V C vert(Q), conv(U) N conv(V) = 0}.
m|
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A simply observation

Alternating Linear Minimizations for Polytopes

Observation (Approximate-Exact Crossover)

Let P,Q C R" be polytopes. There exists epg > 0, so that for all U C vert(P), V C vert(Q)
with dist(conv(U), conv(V)) < epq, it holds conv(U) N conv(V) # 0.

Proof.
Follows from the fact that polytopes having only a finite number of vertices:

epg = min{dist(conv(U), conv(V)) : U C vert(P), V C vert(Q), conv(U) N conv(V) = 0}.
m]

Of course we do not know ¢pg ahead of time...
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Another simple observation

Alternating Linear Minimizations for Polytopes

Observation (Recovery of x € P N Q by linear programming)
Assume x¢ and yr with || xt — y¢|| < epg via ALM.
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Another simple observation

Alternating Linear Minimizations for Polytopes

Observation (Recovery of x € P N Q by linear programming)
Assume x¢ and yr with || xt — y¢|| < epg via ALM.

Let U C vert(P) be all extreme points returned by the LMO for P throughout the execution of
ALM and define V C vert(Q) accordingly. From Observation: conv(U) N conv(V) # 0.
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Another simple observation

Alternating Linear Minimizations for Polytopes

Observation (Recovery of x € P N Q by linear programming)
Assume x¢ and yr with || xt — y¢|| < epg via ALM.

Let U C vert(P) be all extreme points returned by the LMO for P throughout the execution of
ALM and define V C vert(Q) accordingly. From Observation: conv(U) N conv(V) # 0.

Solve linear feasibility program

uel veV
Z Au = 1, Z Ky = 1
uel veV
A>0,x>0,

to obtain
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An exact algorithm

Alternating Linear Minimizations for Polytopes

Algorithm Alternating Linear Minimizations (ALM) [exact version]

Input: Points xg € P, yp € Q, LMO over P,Q C R"
Output: Iterates x1,y1... € R”
1: fort=0to... do
2: U — argmmxep <xt yt,x>
3 Xpp1 — Xp+ 7o - (U — xp)
4 Ut — argminyeQ <yt = xt+1,y>
5 Y1 < Y+ 2 (00— yp)
6
7
8
9

if t = 2F for some k then
if minyep yeQ (xt+1 — Y1, X — y) > (0 then
return “disjoint” and certificate <xt+1 = Y1, X — y> >0

else
10: Solve linear feasibility program.
11: if feasible then
12: return a solutionx € PN Q
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An exact algorithm: Guarantees
Alternating Linear Minimizations for Polytopes

Basically we pay a factor of 2 in iterations for making exact.
Proposition (Exact variant)

Let P, Q be polytopes with diameters Dy and D, respectively. Executing exact ALM variant:
1. If PN Q # 0, then after no more than

16(1 +2V2)(D} + D)

2
€p
block-LMO calls, the algorithm returns x € PN Q.
2. If PN Q = 0, then after no more than

(Dp + Dg)?

2 2y =
16(1 +2V2)(Dp + D) dist(P, Q)4

block-LMO calls the algorithm certifies PN Q = 0.

Note. We counted the resolution of one feasibility LP as one block-LMO.
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How bad can it be?
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Bounds on minimal distance
How bad can it be?

The minimal possible distance dist(P, Q) can be actually quite bad.
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Bounds on minimal distance
How bad can it be?

The minimal possible distance dist(P, Q) can be actually quite bad.

[Deza et al., 2024]
Theorem
If P and Q are disjoint lattice (d, k)-polytopes, then

1 .
W < dist(P, Q),
and for any large enough d, there exist two disjoint (d, k)-lattice polytopes P and Q such that

dist(P, Q) <

(kv
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Bounds on minimal distance
How bad can it be?

The minimal possible distance dist(P, Q) can be actually quite bad.

[Deza et al., 2024]
Theorem
If P and Q are disjoint lattice (d, k)-polytopes, then

1 .
W < dist(P, Q),
and for any large enough d, there exist two disjoint (d, k)-lattice polytopes P and Q such that

dist(P, Q) <

(kv

= In case of disjoint polytopes running time can be as bad as
0 ((k\/E)M) .

= Bad news for our algorithms.
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Can we do better?

Sebastian Pokutta - Splitting algorithms 24 /31



Advanced FW algorithms over polytopes

Can we do better?
AFW, PCG, BCG, BPCG, etc. can solve

minf(x),

to accuracy ¢ in roughly

2
(0] (%log 1)
o €

iterations, for f being L-smooth and p-PL over a polytope P with pyramidal width 6.
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to accuracy ¢ in roughly
2
@) (% log 1)
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iterations, for f being L-smooth and p-PL over a polytope P with pyramidal width 6.

Note. Exponentially better dependence on ¢.
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Advanced FW algorithms over polytopes

Can we do better?

AFW, PCG, BCG, BPCG, etc. can solve
r;lellglf (x),
to accuracy ¢ in roughly
LD* 1
o (—2 log —)
o €
iterations, for f being L-smooth and p-PL over a polytope P with pyramidal width 6.

Note. Exponentially better dependence on ¢.

Recall. Our problem can be formulated as

: 2
min |[x -yl
(x,y)ePxQ y

which is 1-smooth and 1-PL (basically "like" strong-convexity).
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Pyramidal width Over Products

Can we do better?

With a little bit of geometric reasoning we can show:

[lommazzo et al., 2025]

Theorem (Pyramidal width of the product)
Let 6p and 6 be the pyramidal widths of polytopes P, Q € R". Then,
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Pyramidal width Over Products

Can we do better?

With a little bit of geometric reasoning we can show: [fommazzo et al., 2025]
Theorem (Pyramidal width of the product)

Let 6p and 6 be the pyramidal widths of polytopes P, Q € R". Then,

Corollary (Useful lower bound for the pyramidal width of the product)
The pyramidal width of product polytope P = [1e[x) P; is at least

1
Op = Q{— mindp.
P {VE“‘EH P’}

with 6p, being pyramidal width of P;; bound is essentially tight when one pyramidal width is
much smaller than the others.
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Putting it all together

Can we do better?
o . [lommazzo et al., 2025]
Proposition (Faster exact variant)

Let P, Q be polytopes with diameters Dy and Dg, respectively. Executing exact ALM variant
with AFW, PCG, BCG, BPCG, etc. steps:

1. If PN Q # 0, then the algorithm returns x € PN Q in

DI%DZQ 1
— 2 jog—|.
min{op,00)2 © €pg

2. If PN Q = 0, then the algorithm certifies PN Q = 0 in

Pro lo
min{op, 00}2 © dist(P, Q)

2 12
D2D 1)

Note. Dp, Dg, 6p, ¢ are translation invariant and only depend on P and Q, respectively.
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Putting it all together

Can we do better?
o . [lommazzo et al., 2025]
Proposition (Faster exact variant)

Let P, Q be polytopes with diameters Dy and Dg, respectively. Executing exact ALM variant
with AFW, PCG, BCG, BPCG, etc. steps:

1. If PN Q # 0, then the algorithm returns x € PN Q in

D% 1
———log—|.
min{dp, 6Q}2 8 €pQ

2. If PN Q = 0, then the algorithm certifies PN Q = 0 in

Pro lo
min{op, 00}2 © dist(P, Q)
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Note. Dp, Dg, 6p, ¢ are translation invariant and only depend on P and Q, respectively.
Worst-case example from before. Running time reduces to
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Outlook
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Integrating LP solving into convex optimization is very powerful
Outlook

[Halbey et al., 2025]
In Entanglement Detection, Sliding, Splitting, etc. we encounter quadratic programs.

= First-order optimality system is a linear program!
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Integration of LP solving into convex optimization is very powerful.
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If you want to learn more...

Thank you!

Conditional Gradient Methods

Gébor Braun, Alejandro Carderera, Cyrille W
Combettes, Hamed Hassani, Amin Karbasi, Aryan
Mokhtari, and Sebastian Pokutta

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103

to appear in MOS-SIAM Series on Optimization
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