Improved local models and new Bell inequalities via Frank-Wolfe algorithms

Sebastian Pokutta
joint work with: Sébastien Designolle, Gabriele Iommazzo, Mathieu Besançon, Sebastian Knebel, and Patrick Gelß

Technische Universität Berlin and
Zuse Institute Berlin
pokutta@math.tu-berlin.de
@spokutta

Discrete Optimization \times Machine Learning

August 9th, 2023 • Tokyo, Japan

Berlin Mathematics Research Center

What is this talk about?

Introduction

Given a quantum state $|\phi\rangle$ is it (are its correlations) truly quantum (non-local) or just classical (local) in complicated form?

What is this talk about?

Introduction

> Given a quantum state $|\phi\rangle$ is it (are its correlations) truly quantum (non-local) or just classical (local) in complicated form?

Why?

- Non-locality problem central in quantum physics: Every entagled pure quantum state is non-local but for mixed quantum states (NP-)hard to decide.
- Important for Quantum Key Distribution (QKD)

What is this talk about?

Introduction

> Given a quantum state $|\phi\rangle$ is it (are its correlations) truly quantum (non-local) or just classical (local) in complicated form?

Why?

- Non-locality problem central in quantum physics: Every entagled pure quantum state is non-local but for mixed quantum states (NP-)hard to decide.
- Important for Quantum Key Distribution (QKD)

Today:

- An optimization perspective on the non-locality problem
- Frank-Wolfe approach (what else did you expect?)
- Myriad of new non-locality thresholds
- Improvement of the Grothendieck constant of order 3
(Hyperlinked) References are not exhaustive; check references contained therein.

Let's play a game

Bell Experiment - Classical Setup

- Cliff prepares pair of particles with properties $a_{0}, a_{1} \in\{-1,1\}$ for Particle 1 and properties $b_{0}, b_{1} \in\{-1,1\}$ for Particle 2, sends one to Alice and one to Bob.

Assumptions.
Realism: Properties exist irrespective of observation.
Locality: Alice's and Bob's measurements do not influence each other.

Bell Experiment - Classical Setup

- Cliff prepares pair of particles with properties $a_{0}, a_{1} \in\{-1,1\}$ for Particle 1 and properties $b_{0}, b_{1} \in\{-1,1\}$ for Particle 2, sends one to Alice and one to Bob.
- Alice and Bob choose two binary measurements $A_{0}, A_{1} \in\{-1,1\}$ and $B_{0}, B_{1} \in\{-1,1\}$ each.

Assumptions.
Realism: Properties exist irrespective of observation.
Locality: Alice's and Bob's measurements do not influence each other.

Bell Experiment - Classical Setup

- Cliff prepares pair of particles with properties $a_{0}, a_{1} \in\{-1,1\}$ for Particle 1 and properties $b_{0}, b_{1} \in\{-1,1\}$ for Particle 2, sends one to Alice and one to Bob.
- Alice and Bob choose two binary measurements $A_{0}, A_{1} \in\{-1,1\}$ and $B_{0}, B_{1} \in\{-1,1\}$ each.
- Alice and Bob pick one of their measurements randomly, results in 4 combinations:
$\left(A_{0}, B_{0}\right),\left(A_{0}, B_{1}\right),\left(A_{1}, B_{0}\right),\left(A_{1}, B_{1}\right)$

Assumptions.

Realism: Properties exist irrespective of observation.
Locality: Alice's and Bob's measurements do not influence each other.

Bell's Theorem - Classical Correlations

Consider linear combination of property values:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}
$$

Bell's Theorem - Classical Correlations

Consider linear combination of property values:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}=a_{0}\left(b_{0}+b_{1}\right)+a_{1}\left(b_{0}-b_{1}\right) \leq 2,
$$

as either $b_{0}=b_{1}$ or $b_{0}=-b_{1}$.

Bell's Theorem - Classical Correlations

Consider linear combination of property values:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}=a_{0}\left(b_{0}+b_{1}\right)+a_{1}\left(b_{0}-b_{1}\right) \leq 2,
$$

as either $b_{0}=b_{1}$ or $b_{0}=-b_{1}$.
Note: We cannot simultaneously observe the properties in one measurement.

Bell's Theorem - Classical Correlations

Consider linear combination of property values:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}=a_{0}\left(b_{0}+b_{1}\right)+a_{1}\left(b_{0}-b_{1}\right) \leq 2,
$$

as either $b_{0}=b_{1}$ or $b_{0}=-b_{1}$.
Note: We cannot simultaneously observe the properties in one measurement.
However, in expectation:

$$
\mathbb{E}\left[a_{0} b_{0}\right]+\mathbb{E}\left[a_{1} b_{0}\right]+\mathbb{E}\left[a_{0} b_{1}\right]-\mathbb{E}\left[a_{1} b_{1}\right]=\mathbb{E}\left[a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}\right] \leq 2 .
$$

Bell's Theorem - Classical Correlations

Consider linear combination of property values:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}=a_{0}\left(b_{0}+b_{1}\right)+a_{1}\left(b_{0}-b_{1}\right) \leq 2,
$$

as either $b_{0}=b_{1}$ or $b_{0}=-b_{1}$.
Note: We cannot simultaneously observe the properties in one measurement.
However, in expectation:

$$
\mathbb{E}\left[a_{0} b_{0}\right]+\mathbb{E}\left[a_{1} b_{0}\right]+\mathbb{E}\left[a_{0} b_{1}\right]-\mathbb{E}\left[a_{1} b_{1}\right]=\mathbb{E}\left[a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}\right] \leq 2 .
$$

\Rightarrow (One out of many) Bell inequalities, in fact CHSH inequality.

Bell's Theorem - Classical Correlations

Consider linear combination of property values:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}=a_{0}\left(b_{0}+b_{1}\right)+a_{1}\left(b_{0}-b_{1}\right) \leq 2,
$$

as either $b_{0}=b_{1}$ or $b_{0}=-b_{1}$.
Note: We cannot simultaneously observe the properties in one measurement.
However, in expectation:

$$
\mathbb{E}\left[a_{0} b_{0}\right]+\mathbb{E}\left[a_{1} b_{0}\right]+\mathbb{E}\left[a_{0} b_{1}\right]-\mathbb{E}\left[a_{1} b_{1}\right]=\mathbb{E}\left[a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1}\right] \leq 2 .
$$

\Rightarrow (One out of many) Bell inequalities, in fact CHSH inequality.

Note.

For the initiated: corresponds to a facet of the corresponding cut/correlation polytope. For the uninitiated: don't ask.

Quantum Mechanics = Linear algebra on steroids: Quick Recap

- Ket and Bra. Elements in a Hilbert space, e.g., $|\phi\rangle$, can be represented as $|\phi\rangle=\sum_{i=0}^{N-1} \alpha_{i}|i\rangle$, with associated bra as $\langle\phi|=\left(\alpha_{0}^{*}, \ldots, \alpha_{N-1}^{*}\right)^{T}$.
- Representation. $|\phi\rangle=\left(\begin{array}{c}\alpha_{0} \\ \vdots \\ \alpha_{N-1}\end{array}\right)$ and $\langle\phi|=\left(\alpha_{0}^{*}, \ldots, \alpha_{N-1}^{*}\right)$.
- Linearity. $|a \phi+b \gamma\rangle=a|\phi\rangle+b|\gamma\rangle$ and $\langle a \phi+b \gamma|=a^{*}\langle\phi|+b^{*}\langle\gamma|$.
- Inner Product: $\langle i \mid j\rangle=\delta_{i j}$ and $\langle\psi \mid \phi\rangle=\left(\beta_{0}^{*}, \ldots, \beta_{N-1}^{*}\right)^{T} .\binom{\vdots}{\alpha_{N-1}}=\sum_{i=0}^{N-1} \beta_{i}^{*} \alpha_{i}$.
- Density Matrix: $|\phi\rangle\langle\phi|$ for a state $|\phi\rangle$.
- Observable M: Orthogonal projection matrices P_{i} with $I=\sum_{i} P_{i}$ and $P_{i}^{2}=P_{i}$ and $M=\sum_{i} \lambda_{i} P_{i}$ with $\lambda_{i} \in \mathbb{R}$ (distinct) outcomes.
- Expected value of measurement with $M: \operatorname{tr}(M|\phi\rangle\langle\phi|)$.

Bell Experiment - Quantum Setup

- Cliff prepares bipartite quantum state:

$$
|\phi\rangle \doteq \frac{1}{\sqrt{2}}(|0\rangle|1\rangle-|1\rangle|0\rangle)
$$

sends first half to Alice and second half to Bob.

Bell Experiment - Quantum Setup

- Cliff prepares bipartite quantum state:

$$
|\phi\rangle \doteq \frac{1}{\sqrt{2}}(|0\rangle|1\rangle-|1\rangle|0\rangle)
$$

sends first half to Alice and second half to Bob.

- Alice and Bob choose two observables each (with eigenvalues ± 1):
$A_{0} \doteq\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ and $\quad A_{1} \doteq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
and
$B_{0} \doteq \frac{-A_{1}-A_{0}}{\sqrt{2}} \quad$ and $\quad B_{1} \doteq \frac{A_{1}-A_{0}}{\sqrt{2}}$.

$$
A_{0}, A_{1} \in\{-1,1\}
$$

Bell Experiment - Quantum Setup

- Cliff prepares bipartite quantum state:

$$
|\phi\rangle \doteq \frac{1}{\sqrt{2}}(|0\rangle|1\rangle-|1\rangle|0\rangle)
$$

sends first half to Alice and second half to Bob.

- Alice and Bob choose two observables each (with eigenvalues ± 1):
$A_{0} \doteq\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ and $\quad A_{1} \doteq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
and
$B_{0} \doteq \frac{-A_{1}-A_{0}}{\sqrt{2}} \quad$ and $\quad B_{1} \doteq \frac{A_{1}-A_{0}}{\sqrt{2}}$.
- Alice and Bob pick one of their measurements randomly.

Bell's Theorem - Quantum Correlations

Observe. Expected values of measurements:

$$
\begin{array}{ll}
\operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} \\
\operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=-\frac{1}{\sqrt{2}}
\end{array}
$$

Bell's Theorem - Quantum Correlations

Observe. Expected values of measurements:

$$
\begin{array}{ll}
\operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} \\
\operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=-\frac{1}{\sqrt{2}}
\end{array}
$$

Same linear combination of expected values as before:

$$
\begin{aligned}
& \operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)+\operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right) \\
+ & \operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)-\operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=2 \sqrt{2}
\end{aligned}
$$

Bell's Theorem - Quantum Correlations

Observe. Expected values of measurements:

$$
\begin{array}{ll}
\operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} \\
\operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=-\frac{1}{\sqrt{2}}
\end{array}
$$

Same linear combination of expected values as before:

$$
\begin{aligned}
& \operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)+\operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right) \\
+ & \operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)-\operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=2 \sqrt{2}>2
\end{aligned}
$$

Bell's Theorem - Quantum Correlations

Observe. Expected values of measurements:

$$
\begin{array}{ll}
\operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} \\
\operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)=\frac{1}{\sqrt{2}} & \operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=-\frac{1}{\sqrt{2}}
\end{array}
$$

Same linear combination of expected values as before:

$$
\begin{aligned}
& \operatorname{tr}\left(A_{0} \otimes B_{0}|\phi\rangle\langle\phi|\right)+\operatorname{tr}\left(A_{0} \otimes B_{1}|\phi\rangle\langle\phi|\right) \\
+ & \operatorname{tr}\left(A_{1} \otimes B_{0}|\phi\rangle\langle\phi|\right)-\operatorname{tr}\left(A_{1} \otimes B_{1}|\phi\rangle\langle\phi|\right)=2 \sqrt{2}>2
\end{aligned}
$$

\Rightarrow Quantum violation of $\mathrm{CHSH}(!!)$. This is non-locality.

Bell's Theorem - Geometry

After two seconds of meditation. Define the Local Polytope for m measurements

$$
\mathcal{L}_{m} \doteq \operatorname{conv}\left(a b^{T} \mid a, b \in\{-1,1\}^{m}\right)
$$

Bell's Theorem - Geometry

After two seconds of meditation. Define the Local Polytope for m measurements

$$
\mathcal{L}_{m} \doteq \operatorname{conv}\left(a b^{T} \mid a, b \in\{-1,1\}^{m}\right)
$$

What we did is to test whether the "correlation matrix"associated with the density $|\phi\rangle\langle\phi|$ is contained in \mathcal{L}_{m} (here with $m=2$) via the separating hyperplane:

$$
a_{0} b_{0}+a_{1} b_{0}+a_{0} b_{1}-a_{1} b_{1} \leq 2
$$

which is the CHSH inequality.
\Rightarrow Our game today: Membership problem over \mathcal{L}_{m}.

Bell's Theorem - Geometry

Where does your correlation matrix lie? ($m=$ \# measurements)

- \mathcal{L}_{m} : Local polytope (\equiv cut polytope on bipartite graph $K_{m, m}$) = classical correlations
- Q_{m} : Approximable by sequence of SDPs = quantum correlations
- \mathcal{N}_{m} : No-signaling polytope (\equiv rooted semimetric polytope) $=$ no-signaling

Short detour: The Approximate Carathéodory Problem

The Approximate Carathéodory Problem

Problem and Guarantee

Problem. Find $x \in \operatorname{conv}(\mathcal{V})$ with low cardinality satisfying $\left\|x-x^{*}\right\|_{p} \leq \epsilon$.

Theorem (Approximate Carathéodory guarantee)

Let $p \geq 2$. Then there exists $x \in \operatorname{conv}(\mathcal{V})$ with cardinality $O\left(p D_{p}^{2} / \epsilon^{2}\right)$ satisfying $\left\|x-x^{*}\right\|_{p} \leq \epsilon$, where $D_{p}=\sup _{v, w \in \mathcal{V}}\|w-v\|_{p}$.

- This result is independent of the space dimension n
- The bound is tight
[Mirrokni et al., 2017]
- Probabilistic proof (not 'implementable' b/c exact convex combination as input)
- Deterministic proof
[Mirrokni et al., 2017] (via variant of Mirror Descent)
- Algorithmic proof with many additional configurations (via Frank-Wolfe algorithm)

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Algorithm Frank-Wolfe Algor
1: $x_{0} \in \mathcal{V}$
2: for $t=0$ to $T-1$ do
3: $\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

```
Algorithm Frank-Wolfe Algorithm (FW)
    1:}\mp@subsup{x}{0}{}\in\mathcal{V
    2: for t=0 to T-1 do
    3: }\quad\mp@subsup{v}{t}{}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{min}}{v\in\mathcal{V}}{\}\langle\nablaf(\mp@subsup{x}{t}{}),v
    4: }\quad\mp@subsup{x}{t+1}{}\leftarrow\mp@subsup{x}{t}{}+\mp@subsup{\gamma}{t}{}(\mp@subsup{v}{t}{}-\mp@subsup{x}{t}{}
Algorithm Frank-Wolfe Algorithm (FW)
1: \(x_{0} \in \mathcal{V}\)
2: for \(t=0\) to \(T-1\) do
3: \(\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle\)
4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
```

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Algorithm Frank-Wolfe Algor
1: $x_{0} \in \mathcal{V}$
2: for $t=0$ to $T-1$ do
3: $\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

Algorithm Frank-Wolfe Algorithm (FW)

1: $x_{0} \in \mathcal{V}$
for $t=0$ to $T-1$ do
3: $\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{Y}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

$x_{t+1} \leftarrow x_{1}+x_{1}\left(y_{1}-x_{1}\right)$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

```
Algorithm Frank-Wolfe Algorithm (FW)
    1:}\mp@subsup{x}{0}{}\in\mathcal{V
    for t=0 to T-1 do
    3: }\quad\mp@subsup{v}{t}{}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{min}}{v\in\mathcal{V}}{\}\langle\nablaf(\mp@subsup{x}{t}{}),v
    4: }\quad\mp@subsup{x}{t+1}{}\leftarrow\mp@subsup{x}{t}{}+\mp@subsup{\gamma}{t}{\prime}(\mp@subsup{v}{t}{}-\mp@subsup{x}{t}{}
\begin{tabular}{l} 
Algorithm Frank-Wolfe Algor \\
\hline 1: \(x_{0} \in \mathcal{V}\) \\
2: \begin{tabular}{l} 
for \(t=0\) to \(T-1\) do \\
3: \(\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle\) \\
4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
\end{tabular}.
\end{tabular}
```

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

```
Algorithm Frank-Wolfe Algorithm (FW)
    1:}\mp@subsup{x}{0}{}\in\mathcal{V
    fort=0 to T-1 do
    3: }\quad\mp@subsup{v}{t}{}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{min}}{v\in\mathcal{V}}{\}\langle\nablaf(\mp@subsup{x}{t}{}),v
    4: }\quad\mp@subsup{x}{t+1}{}\leftarrow\mp@subsup{x}{t}{}+\mp@subsup{\gamma}{t}{\prime}(\mp@subsup{v}{t}{}-\mp@subsup{x}{t}{}
\begin{tabular}{l} 
Algorithm Frank-Wolfe Algor \\
\hline 1: \(x_{0} \in \mathcal{V}\) \\
2: \begin{tabular}{l} 
for \(t=0\) to \(T-1\) do \\
3: \(\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle\) \\
4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
\end{tabular}.
\end{tabular}
```

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

```
Algorithm Frank-Wolfe Algorithm (FW)
    1:}\mp@subsup{x}{0}{}\in\mathcal{V
    for t=0 to T-1 do
    3: }\quad\mp@subsup{v}{t}{}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{min}}{v\in\mathcal{V}}{\}\langle\nablaf(\mp@subsup{x}{t}{}),v
    4: }\quad\mp@subsup{x}{t+1}{}\leftarrow\mp@subsup{x}{t}{}+\mp@subsup{\gamma}{t}{\prime}(\mp@subsup{v}{t}{}-\mp@subsup{x}{t}{}
\begin{tabular}{l} 
Algorithm Frank-Wolfe Algor \\
\hline 1: \(x_{0} \in \mathcal{V}\) \\
2: \begin{tabular}{l} 
for \(t=0\) to \(T-1\) do \\
3: \(\quad v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle\) \\
4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
\end{tabular}.
\end{tabular}
```

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Solving the Approximate Carathéodory via Conditional Gradients

The Approximate Carathéodory Problem

$$
f(x)=\left\|x-x^{*}\right\|_{2}^{2}
$$

Algorithm Frank-Wolfe Algorithm (FW)

```
    1: \(x_{0} \in \mathcal{V}\)
    for \(t=0\) to \(T-1\) do
        \(v_{t} \leftarrow \arg \min _{v \in \mathcal{V}}\left\langle\nabla f\left(x_{t}\right), v\right\rangle\)
        \(x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
```


- FW minimizes f over $\operatorname{conv}(\mathcal{V})$ by sequentially picking up vertices
- Only accesses $\operatorname{conv}(\mathcal{V})$ via linear minimization
- The final iterate x_{T} has cardinality at most $T+1$
- For membership: provides convex combination decomposition of x^{*}
- For non-membership: provides separating hyperplane with normal $\nabla f\left(x_{t}\right)$

Back to our problem...

Our task

Given state $|\phi\rangle$ decide whether its correlations are local or non-local.

Our task

Given state $|\phi\rangle$ decide whether its correlations are local or non-local.

Slightly refined question. At which visibility v do the (correlations of the) mixed state

$$
\rho_{v} \doteq v|\phi\rangle\langle\phi|+(1-v) \frac{\mathbb{E}}{4}
$$

become non-local, where \mathbb{E} is the all- 1 matrix (i.e., trivial correlation).

Our task-mathematically

Given density ρ_{v} :

- Non-locality. Find an appropriate m, compute correlation matrix $p \in \mathbb{R}^{m \times m}$ from ρ_{v}, and show that there exist a separating hyperplane M, so that

$$
\operatorname{tr}(M d) \leq 1 \quad \forall d \in \mathcal{L}_{m} \quad \text { and } \quad \operatorname{tr}(M p)>1 \quad \text { which implies } \quad v_{\rho} \leq \frac{1}{\operatorname{tr}(M p)}
$$

Our task-mathematically

Given density ρ_{v} :

- Non-locality. Find an appropriate m, compute correlation matrix $p \in \mathbb{R}^{m \times m}$ from ρ_{v}, and show that there exist a separating hyperplane M, so that

$$
\operatorname{tr}(M d) \leq 1 \quad \forall d \in \mathcal{L}_{m} \quad \text { and } \quad \operatorname{tr}(M p)>1 \quad \text { which implies } \quad v_{\rho} \leq \frac{1}{\operatorname{tr}(M p)}
$$

- Locality. Harder as we would need to show for $m=\infty$. Solution: use approximation with finite measurements m and work-in approximation factor $\alpha<1$. Solve approximate Carathéodory for p over \mathcal{L}_{m} to obtain convex decomposition (= deterministic strategy). Provides lower bound on $\alpha^{2} v \leq v_{\rho}$.

Figure: Polyhedral approximations of Bloch sphere (measurements). Right-most polyhedron has a shrinking factor (also called inradius) of 0.9968 .
[Images via Sébastien's polyhedronisme].

Some more technicalities...

Non-locality (upper bounds).

- The LMO over \mathcal{L}_{m} is NP-hard \Rightarrow FW (even advanced variants) too slow.
- Thus use approximation / heuristic as $\mathrm{LMO} \Rightarrow Q \subseteq \mathcal{L}_{m}$.
- Obtained hyperplane $\operatorname{tr}(M x) \leq 1$ might not be valid for \mathcal{L}_{m}.
- Can be fixed by "pushing out" M via one optimization over \mathcal{L}_{m} \Rightarrow solve QUBO problem.
- Pushed out inequality might not be separating. Didn't happen and can be easily checked.

Some more technicalities...

Non-locality (upper bounds).

- The LMO over \mathcal{L}_{m} is NP-hard \Rightarrow FW (even advanced variants) too slow.
- Thus use approximation / heuristic as $\mathrm{LMO} \Rightarrow Q \subseteq \mathcal{L}_{m}$.
- Obtained hyperplane $\operatorname{tr}(M x) \leq 1$ might not be valid for \mathcal{L}_{m}.
- Can be fixed by "pushing out" M via one optimization over \mathcal{L}_{m} \Rightarrow solve QUBO problem.
- Pushed out inequality might not be separating. Didn't happen and can be easily checked.

Locality (lower bounds).

- We need a rational decomposition of p into deterministic strategies.
- Require a rational approximation of the convex multipliers.
- (Usually) does not degrade visibility bound.

Results

After several months of computation...

Werner state visibility $v_{C} \mathrm{Wer}$.

	$v_{c}{ }_{c}^{\text {Wer }}$	Reference	\#Inputs	Year
	0.7071	Clauser et al. [1969a]	2	1969
	0.7056	Vértesi [2008]	465	2008
	0.7054	Hua et al. [2015]	∞	2015
	0.7012	Brierley et al. [2016]	42	2016
	0.6964	Diviánszky et al. [2017]	90	2017
	0.6955	This work: Designolle et al. [2023]	97	2023
00000000	0.6875		$406 \sim \infty$	
	0.6829	Hirsch et al. [2017]	$625 \sim \infty$	2017
	0.6595	Acín et al. [2006] using Krivine [1979]	∞	$\begin{aligned} & 2006 \\ & 1979 \end{aligned}$
	0.5	Werner [1989]	∞	1989

Table: Successive refinements of the bounds on $v_{c}^{\text {Wer }}$, the nonlocality threshold of the two-qubit Werner states under projective measurements. Using m measurements to simulate all projective ones is denoted by $m \sim \infty$.

Results

After several months of computation...

Bonus. Grothendieck constant of order 3 satisfies

$$
K_{G}(3)=\frac{1}{v_{c}^{\mathrm{Wer}}}
$$

Thus. Currently tightest bounds

$$
1.4376 \approx \frac{1}{v_{\text {up }}} \leq K_{G}(3) \leq \frac{1}{v_{\text {low }}} \approx 1.4546 .
$$

[see also Grothendick inequality on Wikipedia]

Results

After several months of computation...

First strong non-locality bounds for tripartite W and GHZ state.

	$v_{\mathcal{C}}^{\text {GHZ }}$	Reference	\#Inputs	Year
$\begin{aligned} & \text { 苟 } \\ & \text { مٌ } \end{aligned}$	0.5	Greenberger et al. [1989]	2	1989
	0.4961	Vértesi and Pál [2011]	5	2011
	0.4932	Brierley et al. [2016]	16	2016
	0.4916	This work	16	2023
$\begin{aligned} & \text { J J } \\ & \text { O} \\ & 0 \end{aligned}$	0.4688		$61 \sim \infty$	
	0.232	Cavalcanti et al. [2016]	$12 \sim \infty$	2016
	0.2	Dür and Cirac [2000]	Entnglmnt threshold	2000

	v_{c}^{W}	Reference	\#Inputs	Year
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{2}{3} \end{aligned}$	0.6442	Sen [De]	2	2003
	0.6007	Gruca et al. [2010]	5	2010
	0.5956	Pandit et al. [2022]	6	2022
	0.5482	This work	16	2023
$\begin{aligned} & \text { 苟 } \\ & 0 \end{aligned}$	0.4861		$46 \sim \infty$	
	0.228	Cavalcanti et al. [2016]	$12 \sim \infty$	2016
	0.2096	Szalay [2011]	Entnglmnt threshold	2011

Shameless plug...

Thank you!

Conditional Gradient Methods
Gäbor Braun Alejandro Carderera Cyrille W. Combettes Hamed Hassani Amin Karbasi Aryan Mokhtari Sebastian Pokutta

Conditional Gradient Methods

Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan

Mokhtari, and Sebastian Pokutta
https://conditional-gradients.org/ https://arxiv.org/abs/2211.14103

References I

A. Acín, N. Gisin, and B. Toner. Grothendieck's constant and local models for noisy entangled quantum states. Phys. Rev. A, 73:062105, Jun 2006. doi: 10.1103/PhysRevA.73.062105. URL https://link.aps.org/doi/10.1103/PhysRevA.73.062105.
D. Avis and T. Ito. Polyhedral and semidefinite approaches to classical and quantum bell inequalities. 2006.
S. Barman. Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Carathéodory's theorem. In Proceedings of the 47 th Annual ACM Symposium on Theory of Computing, pages 361-369, 2015.
J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1(3):195, 1964.
S. Brierley, M. Navascués, and T. Vértesi. Convex separation from convex optimization for large-scale problems. arXiv:1609.05011, 2016. URL https://arxiv.org/abs/1609.05011.
D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk. General method for constructing local hidden variable models for entangled quantum states. Phys. Rev. Lett., 117:190401, Nov 2016. doi: 10.1103/PhysRevLett.117.190401. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.190401.
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23:880-884, Oct 1969a. doi: 10.1103/PhysRevLett.23.880. URL https://link.aps.org/doi/10.1103/PhysRevLett.23.880.
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to test local hidden-variable theories. Physical review letters, 23(15):880, 1969b.
C. W. Combettes and S. Pokutta. Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe Algorithm. Mathematical Programming A, 197:191-214, 2023.
S. Designolle, G. Iommazzo, M. Besançon, S. Knebel, P. Gelß, and S. Pokutta. Improved local models and new Bell inequalities via Frank-Wolfe algorithms. preprint, 22023.
P. Diviánszky, E. Bene, and T. Vértesi. Qutrit witness from the Grothendieck constant of order four. Phys. Rev. A, 96:012113, Jul 2017. doi: 10.1103/PhysRevA.96.012113. URL https://link.aps.org/doi/10.1103/PhysRevA.96.012113.
W. Dür and J. I. Cirac. Classification of multiqubit mixed states: separability and distillability properties. Phys. Rev. A, 61:042314, Mar 2000. doi: 10.1103/PhysRevA.61.042314. URL https://link.aps.org/doi/10.1103/PhysRevA.61.042314.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1-2):95-110, 1956.
D. M. Greenberger, M. A. Horne, and A. Zeilinger. Going beyond Bell's theorem. Bell's Theorem, Quantum Theory, and Conceptions of the Universe, pages 69-72, 1989. URL https://arxiv.org/abs/0712.0921.
J. Gruca, W. Laskowski, M. Żukowski, N. Kiesel, W. Wieczorek, C. Schmid, and H. Weinfurter. Nonclassicality thresholds for multiqubit states: numerical analysis. Phys. Rev. A, 82:012118, Jul 2010. doi: 10.1103/PhysRevA.82.012118. URL https://link. aps.org/doi/10.1103/PhysRevA. 82.012118.
F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, and N. Brunner. Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_{G}(3)$. Quantum, 1:3, Apr 2017. ISSN 2521-327X. URL https://doi.org/10.22331/q-2017-04-25-3.
B. Hua, M. Li, T. Zhang, C. Zhou, X. Li-Jost, and S.-M. Fei. Towards Grothendieck constants and LHV models in quantum mechanics. J. Phys. A, 48(6):065302, jan 2015. doi: $10.1088 / 1751-8113 / 48 / 6 / 065302$. URL https://dx.doi.org/10.1088/1751-8113/48/6/065302.

References II

J.-L. Krivine. Constantes de Grothendieck et fonctions de type positif sur les sphères. Adv. Math., 31(1):16-30, 1979. ISSN 0001-8708. doi: https://doi.org/10.1016/0001-8708(79)90017-3. URL https://www.sciencedirect.com/science/article/pii/0001870879900173.
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 6(5):1-50, 1966.
V. Mirrokni, R. P. Leme, A. Vladu, and S. C.-w. Wong. Tight bounds for approximate carathéodory and beyond. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2440-2448. JMLR. org, 2017.
M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001.
M. Pandit, A. Barasiński, I. Márton, T. Vértesi, and W. Laskowski. Optimal tests of genuine multipartite nonlocality. New J. Phys., 24(12):123017, Dec 2022. doi: 10.1088/1367-2630/aca8c8. URL https://dx.doi.org/10.1088/1367-2630/aca8c8.
G. Pisier. Remarques sur un résultat non publié de b. maurey. Séminaire d'Analyse fonctionnelle (dit" Maurey-Schwartz"), pages 1-12, 1981.
A. Sen(De), U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski. Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states. Phys. Rev. A, 68:062306, Dec 2003. doi: 10.1103/PhysRevA.68.062306. URL https://link. aps.org/doi/10.1103/PhysRevA.68.062306.
S. Szalay. Separability criteria for mixed three-qubit states. Phys. Rev. A, 83:062337, Jun 2011. doi: 10.1103/PhysRevA.83.062337. URL https://link.aps.org/doi/10.1103/PhysRevA. 83.062337.
T. Vértesi. More efficient Bell inequalities for Werner states. Phys. Rev. A, 78:032112, Sep 2008. doi: 10.1103/PhysRevA.78.032112. URL https://link.aps.org/doi/10.1103/PhysRevA.78.032112.
T. Vértesi and K. F. Pál. Nonclassicality threshold for the three-qubit Greenberger-Horne-Zeilinger state. Phys. Rev. A, 84:042122, Oct 2011. doi: 10.1103/PhysRevA.84.042122. URL https://link.aps.org/doi/10.1103/PhysRevA.84.042122.
R. F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40:4277-4281, Oct 1989. doi: 10.1103/PhysRevA.40.4277. URL https://link.aps.org/doi/10.1103/PhysRevA.40.4277.

