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What is this talk about?
Introduction

Given a quantum state |𝜙⟩ is it (are its correlations)
truly quantum (non-local) or just classical (local) in complicated form?

Why?
• Non-locality problem central in quantum physics: Every entagled pure quantum

state is non-local but for mixed quantum states (NP-)hard to decide.
• Important for Quantum Key Distribution (QKD)

Today:
• An optimization perspective on the non-locality problem
• Frank–Wolfe approach (what else did you expect?)
• Myriad of new non-locality thresholds
• Improvement of the Grothendieck constant of order 3

(Hyperlinked) References are not exhaustive; check references contained therein.
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Let’s play a game
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Bell Experiment - Classical Setup

• Cliff prepares pair of particles with
properties a0 , a1 ∈ {−1, 1} for Particle
1 and properties b0 , b1 ∈ {−1, 1} for
Particle 2, sends one to Alice and one
to Bob.

• Alice and Bob choose two binary
measurements A0 ,A1 ∈ {−1, 1} and
B0 , B1 ∈ {−1, 1} each.

• Alice and Bob pick one of their
measurements randomly, results in 4
combinations:
(A0 , B0), (A0 , B1), (A1 , B0), (A1 , B1)

Cliff

Particle
1

Particle
2

Alice Bob

A0 ,A1 ∈ {−1, 1} B0 , B1 ∈ {−1, 1}

Assumptions.
Realism: Properties exist irrespective of observation.
Locality: Alice’s and Bob’s measurements do not influence each other.

[Bell, 1964, Nielsen and Chuang, 2001]
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Bell’s Theorem - Classical Correlations

Consider linear combination of property values:

a0b0 + a1b0 + a0b1 − a1b1

= a0(b0 + b1) + a1(b0 − b1) ≤ 2,

as either b0 = b1 or b0 = −b1.

Note: We cannot simultaneously observe the properties in one measurement.

However, in expectation:

E[a0b0] + E[a1b0] + E[a0b1] − E[a1b1] = E[a0b0 + a1b0 + a0b1 − a1b1] ≤ 2.

⇒ (One out of many) Bell inequalities, in fact CHSH inequality. [Clauser et al., 1969b]

Note.
For the initiated: corresponds to a facet of the corresponding cut/correlation polytope.
For the uninitiated: don’t ask.
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Quantum Mechanics = Linear algebra on steroids: Quick Recap

• Ket and Bra. Elements in a Hilbert space, e.g., |𝜙⟩, can be represented as
|𝜙⟩ = ∑N−1

i=0 𝛼i |i⟩, with associated bra as ⟨𝜙 | = (𝛼∗0 , . . . , 𝛼
∗
N−1)

T.

• Representation. |𝜙⟩ =
©­­­­«

𝛼0
...

𝛼N−1

ª®®®®¬
and ⟨𝜙 | = (𝛼∗0 , . . . , 𝛼

∗
N−1).

• Linearity. |a𝜙 + b𝛾⟩ = a |𝜙⟩ + b |𝛾⟩ and ⟨a𝜙 + b𝛾 | = a∗ ⟨𝜙 | + b∗ ⟨𝛾 |.

• Inner Product: ⟨i | j⟩ = 𝛿ĳ and ⟨𝜓 | 𝜙⟩ = (𝛽∗0 , . . . , 𝛽
∗
N−1)

T ·
©­­­­«

𝛼0
...

𝛼N−1

ª®®®®¬
=

∑N−1
i=0 𝛽∗i𝛼i.

• Density Matrix: |𝜙⟩ ⟨𝜙 | for a state |𝜙⟩.
• Observable M: Orthogonal projection matrices Pi with I =

∑
i Pi and P2

i = Pi and
M =

∑
i 𝜆iPi with 𝜆i ∈ R (distinct) outcomes.

• Expected value of measurement with M: tr(M |𝜙⟩ ⟨𝜙 |).

[See my blog for a short overview]

Sebastian Pokutta · Improved local models and new Bell inequalities 5 / 22

https://www.pokutta.com/blog/research/2022/05/07/cheatsheet-quantum-computing-basics.html


Bell Experiment - Quantum Setup
• Cliff prepares bipartite quantum state:

|𝜙⟩ � 1√
2
(|0⟩ |1⟩ − |1⟩ |0⟩),

sends first half to Alice and second
half to Bob.

• Alice and Bob choose two observables
each (with eigenvalues ±1):

A0 �

(
1 0
0 −1

)
and A1 �

(
0 1
1 0

)
,

and

B0 �
−A1 − A0√

2
and B1 �

A1 − A0√
2

.

• Alice and Bob pick one of their
measurements randomly.

Cliff

1st
half of
state

2nd
half of
state

Alice Bob

A0 ,A1 ∈ {−1, 1} B0 , B1 ∈ {−1, 1}

[Bell, 1964, Nielsen and Chuang, 2001]
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Bell’s Theorem - Quantum Correlations

Observe. Expected values of measurements:

tr(A0 ⊗ B0 |𝜙⟩ ⟨𝜙 |) =
1√
2

tr(A0 ⊗ B1 |𝜙⟩ ⟨𝜙 |) =
1√
2

tr(A1 ⊗ B0 |𝜙⟩ ⟨𝜙 |) =
1√
2

tr(A1 ⊗ B1 |𝜙⟩ ⟨𝜙 |) = −
1√
2

Same linear combination of expected values as before:

tr(A0 ⊗ B0 |𝜙⟩ ⟨𝜙 |) + tr(A0 ⊗ B1 |𝜙⟩ ⟨𝜙 |)
+ tr(A1 ⊗ B0 |𝜙⟩ ⟨𝜙 |) − tr(A1 ⊗ B1 |𝜙⟩ ⟨𝜙 |) = 2

√
2

> 2

⇒ Quantum violation of CHSH(!!). This is non-locality.
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Bell’s Theorem - Geometry

After two seconds of meditation. Define the Local Polytope for m measurements

ℒm � conv(abT | a, b ∈ {−1, 1}m).

What we did is to test whether the “correlation matrix”associated with the density
|𝜙⟩ ⟨𝜙 | is contained in ℒm (here with m = 2) via the separating hyperplane:

a0b0 + a1b0 + a0b1 − a1b1 ≤ 2,

which is the CHSH inequality.

⇒ Our game today: Membership problem over ℒm.
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Bell’s Theorem - Geometry

ℒ𝑚

𝒬𝑚

𝒩𝑚

Where does your correlation matrix lie? (m = # measurements)
• ℒm : Local polytope (≡ cut polytope on bipartite graph Km,m) = classical correlations
• 𝒬m : Approximable by sequence of SDPs = quantum correlations
• 𝒩m : No-signaling polytope (≡ rooted semimetric polytope) = no-signaling

for more background see [Avis and Ito, 2006]
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Short detour:
The Approximate Carathéodory Problem
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The Approximate Carathéodory Problem
Problem and Guarantee

Problem. Find x ∈ conv(𝒱)with low cardinality satisfying ∥x − x∗∥p ≤ 𝜖.

Theorem (Approximate Carathéodory guarantee)
Let p ≥ 2. Then there exists x ∈ conv(𝒱) with cardinality 𝒪(pD2

p/𝜖2) satisfying ∥x− x∗∥p ≤ 𝜖,
where Dp = supv,w∈𝒱 ∥w − v∥p.

• This result is independent of the space dimension n
• The bound is tight [Mirrokni et al., 2017]

• Probabilistic proof [Pisier, 1981, Barman, 2015]

(not ‘implementable’ b/c exact convex combination as input)
• Deterministic proof [Mirrokni et al., 2017]

(via variant of Mirror Descent)
• Algorithmic proof with many additional configurations [Combettes and Pokutta, 2023]

(via Frank–Wolfe algorithm)
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Solving the Approximate Carathéodory via Conditional Gradients
The Approximate Carathéodory Problem

Algorithm Frank-Wolfe Algorithm (FW)

1: x0 ∈ 𝒱
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈𝒱
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)

f (x) = ∥x − x∗∥22

xt

vt

−∇f (xt)

x∗

xt+1

• FW minimizes f over conv(𝒱) by sequentially picking up vertices
• Only accesses conv(𝒱) via linear minimization
• The final iterate xT has cardinality at most T + 1
• For membership: provides convex combination decomposition of x∗

• For non-membership: provides separating hyperplane with normal ∇f (xt)

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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Back to our problem...
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Our task

Given state |𝜙⟩ decide whether its correlations are local or non-local.

Slightly refined question. At which visibil-
ity v do the (correlations of the) mixed state

𝜌v � v |𝜙⟩ ⟨𝜙 | + (1 − v)E4
become non-local, where E is the all-1 ma-
trix (i.e., trivial correlation).

ℒ𝑚

E
4

|𝜙⟩ ⟨𝜙 |

𝑣 |𝜙⟩ ⟨𝜙 | + (1 − 𝑣)E4
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Our task—mathematically
Given density 𝜌v:
• Non-locality. Find an appropriate m, compute correlation matrix p ∈ Rm×m from

𝜌v, and show that there exist a separating hyperplane M, so that

tr(Md) ≤ 1 ∀d ∈ ℒm and tr(Mp) > 1 which implies v𝜌 ≤
1

tr(Mp) .

• Locality. Harder as we would need to show for m = ∞. Solution: use
approximation with finite measurements m and work-in approximation factor
𝛼 < 1. Solve approximate Carathéodory for p over ℒm to obtain convex
decomposition (= deterministic strategy). Provides lower bound on 𝛼2v ≤ v𝜌.

Figure: Polyhedral approximations of Bloch sphere (measurements). Right-most polyhedron has a shrinking factor (also called
inradius) of 0.9968. [Images via Sébastien’s polyhedronisme].
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Some more technicalities...

Non-locality (upper bounds).
• The LMO over ℒm is NP-hard⇒ FW (even advanced variants) too slow.
• Thus use approximation / heuristic as LMO⇒ Q ⊆ ℒm.
• Obtained hyperplane tr(Mx) ≤ 1 might not be valid for ℒm.
• Can be fixed by “pushing out” M via one optimization over ℒm
⇒ solve QUBO problem.
• Pushed out inequality might not be separating. Didn’t happen and can be easily

checked.

Locality (lower bounds).
• We need a rational decomposition of p into deterministic strategies.
• Require a rational approximation of the convex multipliers.
• (Usually) does not degrade visibility bound.
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Results
After several months of computation...

Werner state visibility vWer
c .

vWer
c Reference #Inputs Year

0.7071 Clauser et al. [1969a] 2 1969
0.7056 Vértesi [2008] 465 2008
0.7054 Hua et al. [2015] ∞ 2015
0.7012 Brierley et al. [2016] 42 2016
0.6964 Diviánszky et al. [2017] 90 2017U

pp
er

bo
un

ds

0.6955 97
0.6875

This work: Designolle et al. [2023]
406 ∼ ∞

2023

0.6829 Hirsch et al. [2017] 625 ∼ ∞ 2017
Acín et al. [2006] 2006

0.6595
using Krivine [1979]

∞
1979

Lo
w

er
bo

un
ds

0.5 Werner [1989] ∞ 1989

Table: Successive refinements of the bounds on vWer
c , the nonlocality threshold of the two-qubit Werner states under projective

measurements. Using m measurements to simulate all projective ones is denoted by m ∼ ∞.
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Results
After several months of computation...

Bonus. Grothendieck constant of order 3 satisfies

KG(3) =
1

vWer
c

.

Thus. Currently tightest bounds

1.4376 ≈ 1
vup
≤ KG(3) ≤

1
vlow

≈ 1.4546.

[see also Grothendick inequality on Wikipedia]
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Results
After several months of computation...

First strong non-locality bounds for tripartite W and GHZ state.

vGHZ
c Reference #Inputs Year

0.5 Greenberger et al. [1989] 2 1989
0.4961 Vértesi and Pál [2011] 5 2011
0.4932 Brierley et al. [2016] 16 2016U

pp
er

0.4916 16
0.4688

This work
61 ∼ ∞

2023

0.232 Cavalcanti et al. [2016] 12 ∼ ∞ 2016
EntnglmntLo

w
er

0.2 Dür and Cirac [2000]
threshold

2000

vW
c Reference #Inputs Year

0.6442 Sen [De] 2 2003
0.6007 Gruca et al. [2010] 5 2010
0.5956 Pandit et al. [2022] 6 2022U

pp
er

0.5482 16
0.4861

This work
46 ∼ ∞

2023

0.228 Cavalcanti et al. [2016] 12 ∼ ∞ 2016
EntnglmntLo

w
er

0.2096 Szalay [2011]
threshold

2011
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Shameless plug...

Thank you!
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Conditional Gradient Methods

Conditional Gradient Methods

Gábor Braun, Alejandro Carderera, Cyrille W
Combettes, Hamed Hassani, Amin Karbasi, Aryan

Mokhtari, and Sebastian Pokutta

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103
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