Accelerated and Sparse Algorithms for
 Approximate Personalized PageRank and Beyond

David Martínez-Rubio (TUB, ZIB), Elias Wirth (TUB, ZIB), Sebastian Pokutta (TUB, ZIB)
Cooperation: TU Berlin
Funding: DFG Cluster of Excellence MATH+

Problem [COLT 2022 Open Problem]

Design local accelerated methods for ℓ_{1}-regularized undirected Personalized PageRank problems: depend only on nodes in the solution and neighbors. More generally:

$$
\min _{x \in \mathbb{R}_{\geq 0}^{n}}\{g(\mathbf{x}) \stackrel{\text { def }}{=}\langle\mathbf{x}, Q \mathbf{x}\rangle-\langle\mathbf{b}, \mathbf{x}\rangle\}
$$

for symmetric Q s.t. $0<\mu \cdot I \leqslant Q \leqslant L \cdot I$ and $Q_{i j} \leq 0$.

Problem Derivation and Applications

Applications: local graph clustering, i.e,. dividing a graph into internally similar sub clusters. Used in domains including technical [Viro3; ACLo6], biological [XOXO2; BHO3; BML+O5], sociological settings [New03; TMP11], coauthorship networks [LBN+05], etc.

Let G be an undirected connected graph ("dangling nodes" can be dealt with [EMTO4]). The PageRank problem:

- Find the stationary distribution $x \in \Delta$ of the uniform random walk $A D^{-1} x=x$ (A : adjacency matrix, D : diagonal degree matrix). Weighted walk works as well.
- Connectedness \Longrightarrow irreducibility \Longrightarrow unique stationary distribution.
- In directed PageRank, uniqueness is ensured by modifying the Markov Chain as (1$\alpha) A D^{-1}+\alpha s 1^{T}$ for $s \in \Delta$ (teleportation distribution) such that we have irreducibility (strong connectedness). In undirected PageRank, this is useful for local graph clusering (e.g. $s=e_{i}$ computes a cluster around node i).
- Classically in PageRank $s=\mathbb{1} / n$. Personalized PageRank: any $s \in \Delta$.
- Aperiodicity: We can use the lazy walk $\frac{1}{2}\left(I+A D^{-1}\right)$ instead of $A D^{-1}$ to ensure convergence of the chain to the stationary distribution.
- Adding ℓ_{1}-regularization $\rho\|x\|_{1}$ induces sparsity of the solution.
- After reformulation, the problem is in the form above where

$$
Q \stackrel{\text { def }}{=} \alpha I+\frac{1-\alpha}{2} \mathcal{L} \quad \text { and } \quad \mathbf{b} \stackrel{\text { def }}{=} \alpha\left(D^{-1 / 2} \mathbf{s}-\rho D^{1 / 2} 1\right)
$$

where \mathcal{L} is the symm. normalized Laplacian $I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$, which gives $0<\alpha I \leqslant Q \leqslant I$. - Beyond PageRank, we only require symmetric positive definite M-matrix Q.

- We solve the open problem.
- We obtain accelerated sparse algorithms and other sparse algorithms.
- Improvement depends on the sparsity of the solution and the graph.
- Our new algorithms also perform better empirically.

Experiments

Top: Running time along with ISTA and FISTA in a 4 M nodes graph. FISTA is accelerated but not guaranteed to be sparse. We fixed $\varepsilon=10^{-6}$, and either fixed $\rho=10^{-4}$ while varying α or we fixed $\alpha=0.05$ and while varying ρ. Bottom: suboptimality gap and number of nonzeroes of the solution with time. CASPR performs best in practice, as expected from our theory. Our algorithms enjoy better sparsity. This is due to them sequentially optimizing in the subspace spanned by the current support.

Results and Previous Work

L smoothness, μ strong convexity, $\alpha \leq \mu$ estimate of strong convexity. $\mathcal{S}^{*} \stackrel{\text { def }}{=} \operatorname{supp}\left(\mathbf{x}^{*}\right)$, $\operatorname{vol}\left(\mathcal{S}^{*}\right) \stackrel{\text { def }}{=} \mathrm{nnz}\left(Q_{:, \mathcal{S}^{*}}\right)$ and $\widetilde{\operatorname{vol}}\left(\mathcal{S}^{*}\right) \stackrel{\text { def }}{=} \mathrm{nnz}\left(Q_{\mathcal{S}^{*}, \mathcal{S}^{*}}\right)$.

Method	Time complexity	Space complexity
ISTA [FRS+19] $\widetilde{O}\left(\operatorname{vol}\left(\mathcal{S}^{*}\right) \frac{L}{\mu}\right)$	$O\left(\left\|\mathcal{S}^{*}\right\|\right)$	
CDPR (Ours)	$O\left(\left\|\mathcal{S}^{*}\right\|^{3}+\left\|\mathcal{S}^{*}\right\| \operatorname{vol}\left(\mathcal{S}^{*}\right)\right)$	$O\left(\left\|\mathcal{S}^{*}\right\|^{2}\right)$
ASPR (Ours)	$\widetilde{O}\left(\left\|\mathcal{S}^{*}\right\| \widetilde{\operatorname{vol}}\left(\mathcal{S}^{*}\right) \sqrt{\frac{L}{\alpha}}+\left\|\mathcal{S}^{*}\right\| \operatorname{vol}\left(\mathcal{S}^{*}\right)\right)$	$O\left(\left\|\mathcal{S}^{*}\right\|\right)$
CASPR (Ours)	$\widetilde{O}\left(\left\|\mathcal{S}^{*}\right\| \widetilde{\operatorname{vol}}\left(\mathcal{S}^{*}\right) \min \left\{\sqrt{\frac{L}{\mu}},\left\|\mathcal{S}^{*}\right\|\right\}+\left\|\mathcal{S}^{*}\right\| \operatorname{vol}\left(\mathcal{S}^{*}\right)\right)$	$O\left(\left\|\mathcal{S}^{*}\right\|\right)$
LASPR (Ours)	$\widetilde{O}\left(\left\|\mathcal{S}^{*}\right\| \operatorname{vol}\left(\mathcal{S}^{*}\right)\right)$	$O\left(\left\|\mathcal{S}^{*}\right\|\right)$

Exact Algorithmic Scheme

- Definition: i is a good coordinate iff $i \in \mathcal{S}^{*}$. Otherwise it is bad.
- Idea for an algorithm: discover good coordinates sequentially, by optimizing in $C^{(t)} \stackrel{\text { def }}{=} \operatorname{span}\left(\left\{\mathbf{e}_{i} \mid i \in S^{(t)}\right\}\right) \cap \mathbb{R}_{\geq 0}^{n}$, where $S^{(t)}$ is the set of known good coordinates.
- By the geometric lemma below, at the minimizer $\mathbf{x}^{(*, t+1)} \stackrel{\text { def }}{=} \mathbf{x}^{\left(*, C^{(t)}\right)}$ we have $\nabla_{i} g\left(\mathbf{x}^{(*, t+1)}\right)<0$ only if i is good and new, i.e., only if $i \in \mathcal{S}^{*} \backslash S^{(t)}$.
- Using conjugate directions and exploiting the sparsity we define CDPR.

Geometric Lemma

For $S \subseteq[n]$ and $\mathbf{x}^{(t)} \in \mathbb{R}^{n}$ such that $x_{i}=0$ if $i \in S$ and $\nabla_{i} g(\mathbf{x}) \leq 0$ if $i \in S$. Let $C \stackrel{\text { def }}{=}$ $\operatorname{span}\left(\left\{\mathbf{e}_{i} \mid i \in S\right\}\right) \cap \mathbb{R}_{\geq 0}^{n}, \mathbf{x}^{(*, C)} \stackrel{\text { def }}{=} \arg \min _{\mathbf{x} \in C} g(\mathbf{x}), \mathbf{x}^{*} \stackrel{\text { def }}{=} \arg \min _{\mathbf{x} \in \mathbb{R}_{\geq 0}^{n}} g(\mathbf{x})$.

1. It holds that $\mathbf{x}^{(0)} \leq \mathbf{x}^{(*, C)}$ and $\nabla_{i} g\left(\mathbf{x}^{(*, C)}\right)=0$ for all $i \in S$.
2. If for $i \in S$, we have $\mathbf{x}_{i}^{(0)}>0$ or $\nabla_{i} g\left(\mathbf{x}^{(0)}\right)<0$, then $x_{i}^{(*, C)}>0$.
3. If $x_{i}^{(*, C)}>0$ for all $i \in S$, we have $\mathbf{x}^{(*, C)} \leq \mathbf{x}^{*}$ and therefore $S \subseteq \mathcal{S}^{*}$.

Fig. 3: Right: A negative coordinate gradient like $\nabla_{2} g(\mathbf{x})$ for a point below the optimizer in span $\left(e_{1}\right)$ implies the coordinate is good. So we search for points with $\nabla_{S} g(\mathbf{x}) \leq 0$, s.t. $\exists i \notin S, \nabla_{i} g(\mathbf{x})<0$, for $S=\operatorname{supp}(\mathbf{x})$. Left: A negative coordinate gradient like $\nabla_{2} g(\mathbf{x})$ for a point not below the optimizer in span $\left(e_{1}\right)$ does not imply the coordinate is good Proof of 1.: $\bar{g} \stackrel{\text { def }}{=} g$ restricted to C. Let $\left\{\mathbf{x}^{(t)}\right\}_{t=0}^{\infty}$ be the iterates of $\operatorname{GD}\left(C, \mathbf{x}^{(0)}, \bar{g}\right)$. By induction, $\nabla \bar{g}\left(\mathbf{x}^{(t)}\right) \leq 0$ and $\mathbf{x}^{(t)} \leq \mathbf{x}^{(t+1)} \in C$. Indeed, using that the gradient is affine:

$$
\begin{aligned}
& \mathbf{x}^{(t+1)}=\mathbf{x}^{(t)}-\underbrace{1 / L \nabla \bar{g}\left(\mathbf{x}^{(t)}\right)}_{\leq 0} \geq \mathbf{x}^{(t)} \text { and } \nabla \bar{g}\left(\mathbf{x}^{(t+1)}\right)=\underbrace{\nabla \bar{g}\left(\mathbf{x}^{(t)}\right)}_{\leq 0} \underbrace{\left(I-{ }^{1} / L Q_{S, S}\right)}_{\geq 0} \leq 0 \\
& \mathbf{x}^{(t)} \rightarrow \mathbf{x}^{(*, C)}, \nabla \bar{g}\left(\mathbf{x}^{(t)}\right) \rightarrow \nabla \bar{g}\left(\mathbf{x}^{(*, C)}\right) \leq 0 \text { (and by optimality } \geq 0 \text {.) }
\end{aligned}
$$

Approximate Accelerated Algorithmic Scheme

[^0]
[^0]: 1. Because $Q_{i j} \leq 0$ for $i \neq j$, for $\mathbf{y}=\mathbf{x}-\Delta \mathbf{e}_{i}$, we have $\forall j \neq i: \nabla_{j} g(\mathbf{y}) \geq \nabla_{j} g(\mathbf{x})$ if $\Delta>0$. 2. Recall, $\nabla_{i} g\left(\mathbf{x}^{\left(*, C^{(t)}\right.}\right)<0$ only if i is good. So by 1., for $\mathbf{x} \in C^{(t)}$ s.t. $\mathbf{x} \leq \mathbf{x}^{\left(*, C^{(t)}\right.}$, new coordinates i can only satisfy $\nabla_{i} g(\mathbf{x})<0$ if they are good.
 2. Strategy: Get close to $\mathbf{x}^{\left(*, C^{(t)}\right)}$ and then move slightly towards 0 to be $\leq \mathbf{x}^{\left(*, C^{(t)}\right)}$.
 3. Lemma. Let $\overline{\mathbf{x}}^{(t+1)}$ be an $\varepsilon \cdot \frac{\alpha^{2}}{2\left(1+\left|S^{(t)}\right| L^{2}\right.}$ minimizer in $C^{(t)}$. Define $\mathbf{x}^{(t+1)} \leftarrow \operatorname{Proj}_{\mathbb{R}_{\geq 0}^{n}}\left(\overline{\mathbf{x}}^{(t+1)}-\right.$ $\delta_{t} 1$) for $\delta_{t}=\sqrt{\frac{\varepsilon \alpha}{\left(1+\left|S^{(t)}\right|\right) L^{2}}}$. Then, $\mathbf{x}^{(t+1)} \leq \mathbf{x}^{\left(*, C^{(t)}\right)}$ and $\mathbf{x}^{(t+1)}$ is a global ε-minimizer or there is i s.t. $\nabla_{i} g\left(\mathbf{x}^{(t+1)}\right)<0$, so we expand the current set of good coordinates $S^{(t)}$. 5. Intuition. $\mathbf{x}^{(t+1)}$ is almost optimal in $C^{(t)}$, so if its global gap is $>\varepsilon$ then 1 step of GD makes more progress than what it is possible in $C^{(t)} . \Longrightarrow \exists i \notin S^{(t)}$ s.t. $\nabla_{i} g\left(\mathbf{x}^{(t+1)}\right)<0$ 6. Obtain 3. with projected AGD or Conjugate Gradients with the right stopping criterion (our problem is strongly convex and smooth). We can also use a nearly-linear time solver for symmetric diagonally dominant linear systems.
