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Accelerated Riemannian Optimization:
Handling Constraints to Bound Geometric Penalties
David Martínez-Rubio (TUB, ZIB), Sebastian Pokutta (TUB, ZIB)

Problem
Design accelerated first-order methods for smooth and

(strongly or not) geodesically-convex problems.

Taking into account that:

All accelerated methods require the iterates to stay in some pre-specified set to bound errors
caused by the interplay of estimations and the geometry and its curvature: geometric penalties.
Most previous works just assume that the iterates of their algorithms are going to stay in this
pre-specified set without any mechanism for enforcing this condition.
Two works do not make this assumption, but they only work in limited settings: in a small
neighborhood of the minimizer or in manifolds of constant curvature, respectively.

Riemannian Optimization
This kind of optimization concerns the following problem:

minimize f(x) subject to x ∈M, for a Riemannian manifoldM.

It turns constrained problems into unconstrained ones by working inside of the manifold and
exploiting its structure.
A function can be Euclidean non-convex but g-convex on a manifold with the right metric.
The g-convex case is a useful tool to understand the non g-convex case, similarly to what
happens for Euclidean problems.
Some applications of Riemannian optimization:
– Hadamard and g-convex: Gaussian mixture models, robust covariance estimation in

Gaussians, operator scaling, Wasserstein Barycenters, Karcher means, computing
Brascamp-Lieb constants.

– Others: PCA, low-rank matrix completion, dictionary learning, optimization under
orthogonality constraints (with applications to RNNs [LM19]).

When optimizing in Riemannian manifolds, we make use of the tangent space TxM of points
x ∈M, depicted in the figure.
Given two points x, y ∈M, the inverse exponential map Exp−1x (y) returns a vector in TxM such
that the geodesic segment starting from x with that vector’s direction and length ends at y.
We work on geodesically convex and uniquely geodesic sets, for which this vector is well
defined and unique.

(note that we work on Hadamard manifolds in this work, which does not include the sphere)

Our Setting
For a Riemannian manifold of bounded sectional curvature in [κmin, κmax], we define:

ζ
def
= R

√∣∣κmin

∣∣ coth(R
√∣∣κmin

∣∣) if κmin ≤ 0 and def
= 1 otherwise.

It is ζ ∈ [R
√∣∣κmin

∣∣,R√∣∣κmin

∣∣ + 1].

We work with a wide class of Hadamard manifoldsH, thus κmin ≤ κmax ≤ 0.
We have a differentiable function f with a global minimizer at x∗. Let x0 ∈ H be an initial point
and R > d(x0, x∗) a bound. For any two points x, y in B̄(x0,3R), we have smoothness and (possibly
µ-strongly) g-convexity:

f(y) ≤ f(x) + 〈∇f(x),Exp−1x (y)〉 +
L
2
d(x, y)2,

f(y) ≥ f(x) + 〈∇f(x),Exp−1x (y)〉 +
µ

2
d(x, y)2,

where d(x, y) is the Riemannian distance. A function is geodesically convex, if it is 0-strongly geodesi-
cally convex, that is, the function is convex when restricted to every geodesic segment in the set.

Goal: Accelerated optimization of f with first-order methods under these assumptions.

We ensure iterates stay in B̄(x0,3R).
We develop an accelerated Riemannian inexact proximal point method.
We instantiate the method and boost convergence implementing ball optimization oracles.

Comparison with Previous Works
Legend

K?: sectional curvature values?
G?: is the algorithm global? L and L′ mean they are local algorithms. They require initial
distance O((L/µ)−3/4) and O((L/µ)−1/2), respectively.
F?: Full acceleration? That is, dependence on L, µ, and ε like AGD, up to log factors.
C?: can some constraints be enforced? All methods require their iterates to be in some
pre-specified compact set. ‘7 ’ means: iterates will stay inside of the set by assumption only.
W def

=
√

L/µ log(LR2/ε).

Method g-convex µ-st. g-convex K? G? F? C?

[Nes05, AGD] O(

√
LR2
ε ) O(W) 0 3 3 3

[ZS18] - O(W) bounded L 3 7

[AS20] - Õ(Lµ + W) bounded 3 7 7

[Mar22] Õ(ζ2
√
ζ + LR2

ε ) Õ(ζ2 ·W) ctant. 6= 0 3 3 3

[CB21] - O(W) bounded∗ L′ 3 3

[KY22] O(ζ

√
LR2
ε ) O(ζ ·W) bounded 3 3 7

This work Õ(ζ2
√
ζ + LR2

ε ) Õ(ζ2 ·W) Hadamard∗ 3 3 3

This work∗∗ Õ(ζ

√
ζ + LR2

ε ) Õ(ζ ·W) Hadamard∗ 3 3 3

∗ Covariant derivative of the metric tensor is assumed to be 0 (bounded also works). It is 0 for all
applications known to us.
∗∗ With access to a convex projection oracle (see below).

Accelerated Riemannian Inexact Proximal Point Method

We design a generic framework for accelerated optimization that assumes access to a linearly
convergent subroutine to approx. solve the constrained prox minx∈X{f(x) + 1

λd(xt, x)2} for some
geodesically convex subset X of diameter D. For the right λ, the condition number of this
problem only depends on the geometry and is O(ζD).
We can use the g-convexity of the Moreau envelope to construct an inexact version of an
implicit subgradient descent step, the exact one would be yk = Expxk(−λΓ

xk
ykvk), where

vk ∈ ∂(f + IX )(yk) and Γ
xk
ykvk represents parallel transport to TxkH.

We design an accelerated algorithm using this inexact implicit descent in combination with a
mirror descent algorithm whose simple (quadratic) regularized lower bound lives in TxkH, is
updated there and then it is “moved” to Txk+1H using a technique from [KY22] (i.e., another
quadratic regularized lower bound is found in Txk+1H).

We minimize in Õ(ζD

√
LR2/ε) iterations, each requiring the prox subroutine.

Even if the prox is computed exactly, there were no accelerated Riemannian proximal point
methods before this work.

Inexact Ball Optimization Oracle Implementation and Convergence Boost

For balls of diameter D def
= Θ(1/(R

∣∣κmin

∣∣)) and center xk, we can pull back the prox function to
TxkH and the resulting Euclidean function is strongly convex smooth with condition number of
the same order O(ζD): only possible because the condition number is a geometric constant and
is independent of the condition number of f.
We use an Euclidean algorithm on the pull back to instantiate the subroutine in our algorithm.
This allows to obtain a fast implementation of an inexact ball optimization oracle.
Sequential application of the inexact ball optimization oracle for Õ(R/D) = Õ(ζ2) times leads to
global accelerated convergence (distance to x∗ can only grow by a factor of 3).
Alternatively, for D = O(

∣∣κmin

∣∣−1/2), we show that the following projection operator is a convex
well-defined problem. And with access to it, we can implement inexact optimization oracles over
balls X for bigger D, shaving off a ζ in the convergence rates. It can be easily solved for the
hyperbolic space.

xt+1 = arg min
y∈X

{〈∇f(xt), y − xt〉xt +
L
2
d(xt, y)2} = Expxt( arg min

y∈Exp−1xt (X )

‖ − 1
L
∇f(xt)− y‖2xt).
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