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Binary Classification

Input space X ⊆ Rn and output space Y = {−1,+1}
Training sample

S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

drawn i .i .d . from some unknown distribution D
Determine a hypothesis h : X → Y with small generalization error

P(x,y)∽D[h(x) ̸= y ]
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Linearly Separable Case
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Linearly Separable Case
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Non-Separable Case
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Algebraic Set

Let P denote the polynomial ring in n variables

Definition 1 (Algebraic Set).

A set X ⊆ Rn is algebraic if there exists a finite set of
polynomials G ⊆ P, such that X is the set of common
roots of G.

Example 2 (Ball of Radius 1).

X = {x ∈ R2 | x21 + x22 = 1} ⇒ G = {x21 + x22 − 1}
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Non-Separable Case
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Non-Separable Case
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Non-Separable Case

X+1 ⊆ {x ∈ R2 | x21 + x22 = 1}
X−1 ⊆ {x ∈ R2 | x21 + x22 = 2}
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Non-Separable Case

X+1 ⊆ {x ∈ R2 | x21 + x22 = 1}
X−1 ⊆ {x ∈ R2 | x21 + x22 = 2}

g(x) = x21 + x
2
2 − 1

|g(x+1)| = 0
|g(x−1)| = 1
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Non-Separable Case

g(x) = x21 + x
2
2 − 1

⇒
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Non-Separable Case

g(x) = x21 + x
2
2 − 1

⇒
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Vanishing Ideal

Data set X = {x1, . . . , xm} ⊆ Rn

Vanishing Ideal

IX = {f ∈ P | f (x) = 0 for all x ∈ X}

Finite set of generators G = {g1, . . . , gk} ⊆ IX such
that for all f ∈ IX , there exist h1, . . . , hk ∈ P with

f =

k∑
i=1

gihi .

[Cox et al., 2013]
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Approximately Vanishing Polynomial

Definition 3 (Approximately Vanishing Polynomial).

Let X = {x1, . . . , xm} ⊆ Rn. A polynomial
g =

∑k
i=1 citi ∈ P is called (ψ, 1, τ)-approximately

vanishing (over X ) if

1 MSE(g,X ) := 1
m

∑m
i=1 g(xi)

2 ≤ ψ,
2 LTC(g) = ck = 1,
3 ∥g∥1 := ∥c∥1 ≤ τ .

Definition 4 (Approximate Vanishing Ideal).

Let X = {x1, . . . , xm} ⊆ Rn. The (ψ, τ)-approximate
vanishing ideal is the ideal generated by all

(ψ, 1, τ)-approximately vanishing polynomials.
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Classification Pipeline

Algorithm 1: Pipeline

Input : Training sample S = {(x1, y1), . . . , (xm, ym)} with
X = {x1, . . . , xm} ⊆ Rn and y1, . . . , ym ∈ {−1,+1}.

X±1 ← {xj ∈ X | yj = ±1} ⊆ X
G±1 ← generating set of the approximate vanishing ideal Iψ

X±1

G = {g1, . . . , g|G|} ← G+1 ∪ G−1
for j = 1, . . . ,m do
x̃j ←

(
|g1(xj)|, . . . , |g|G|(xj)|

)⊺ ∈ R|G|

end

train linear classifier on X̃ = {x̃ | x ∈ X}
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Algorithm

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI)

Input : X = {x1, . . . , xm} ⊆ Rn, ψ ≥ 0, and τ ≥ 2.
Output: G ⊆ P and O ⊆ T .
d ← 1, O ← {1}, G ← ∅
while ∂dO = {u1, . . . , uk} ≠ ∅ do
for i = 1, . . . , k do
g ← construct candidate polynomial
if g vanishes approximately then
G ← G ∪ {g}

else
O = {t1, . . . , tℓ} ← O ∪ {ui}

end

end

d ← d + 1
end
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Algorithm: Border

Let T denote the set of monomials in n variables

Definition 5 (Border).

Let O ⊆ T . The (degree-d) border of O is defined as
∂dO = {u ∈ Td : t ∈ O≤d−1 for all t ∈ T≤d−1 such that t | u}.

Example 6 (Simple Border Example).

Let n = 2 and O = {1, x , y , xy , y 2}. Then, ∂3O = {xy 2, y 3}.

y 3 xy 3 x2y 3 x3y 3

y 2 xy 2 x2y 2 x3y 2

y xy x2y x3y

1 x x2 x3
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Algorithm: Candidate Polynomial

X = {x1, . . . , xm} ⊆ Rn

O = {t1, . . . , tℓ} ⊆ T and let A := O(X ) ∈ Rm×ℓ

u ∈ ∂dO ⊆ T and let b := u(X ) ∈ Rm

Solve c∗ ∈ argmin∥c∥1≤τ
1
m∥b+ Ac∥

2
2

g ← u +
∑ℓ
i=1 c

∗
i ti

Theorem 7 (Wirth and Pokutta, 2022).

If there exists a (ψ, 1, τ)-approximately vanishing
polynomial, then g is one of them.
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Computational Complexity: Theory

Theorem 8 (Complexity [Wirth and Pokutta, 2022]).

Let X = {x1, . . . , xm} ⊆ Rn, ψ ∈ [0, 1[, τ ≥ 2, and
(G,O) = OAVI(X , ψ, τ).
Time: O((|G|+ |O|)2 + (|G|+ |O|)TORACLE).
Space: O((|G|+ |O|)m + SORACLE).

|G|+ |O| = O(mn) [Limbeck, 2013, Livni et al.,
2013, Wirth and Pokutta, 2022]

Corollary 9.

Time: O(m3)

Space: O(m2)
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Computational Complexity: Experiment
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Computational Complexity: Theory II

Time: O((|G|+ |O|)2 + (|G|+ |O|)TORACLE).
Space: O((|G|+ |O|)m + SORACLE).

Theorem 10 ([Wirth et al., 2022]).

Let X = {x1, . . . , xm} ⊆ [0, 1]n, ψ ∈]0, 1[,
D = ⌈− log(ψ)/ log(4)⌉, τ ≥ (3/2)D, and
(G,O) = OAVI(X , ψ, τ). Then, |G|+ |O| ≤

(
D+n
D

)
.

Corollary 11.

Time: O(m3)⇒ O(m)
Space: O(m2)⇒ O(m)
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Learning Guarantees

Theorem 12 ([Wirth and Pokutta, 2022, Wirth et al., 2022]).

Let X ⊆ [−1, 1]n, let ψ ∈]0, 1[, let D = ⌈− log(ψ)/ log(4)⌉, let
τ ≥ (3/2)D , let k =

(
D+n
D

)
≤

(
e(D+n)
D

)D
, and let

X = {x1, . . . , xm} ∈ Xm be drawn i.i.d. according to a distribution
D. Let (G,O) = OAVI(X , ψ, τ). Then, for any δ > 0, with
probability at least 1− δ, the following inequality holds for all
g ∈ G:

Ex∽D [MSE(g, {x})] ≤ MSE(g,X )

+ 4τ2
√
2k log(2(n + 1)k)

m
+ 12τ2

√
log(2δ−1)

2m
.
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Conclusion

Contributions

Learning Guarantees [Wirth and Pokutta, 2022]

Computational complexity depends linearly on the

number of samples [Wirth et al., 2022]

Open Problems

Learning guarantees for related methods

A ”better” notion than approximate vanishing ideal
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