
Approximate Vanishing Ideal Computations at Scale

Elias Wirth1,2 Hiroshi Kera3 Sebastian Pokutta1,2

1Technische Universität Berlin

2Zuse Institute Berlin

3Chiba University

September 19, 2022

1 / 22

Binary Classification

Input space X ⊆ Rn and output space Y = {−1,+1}
Training sample

S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

drawn i .i .d . from some unknown distribution D
Determine a hypothesis h : X → Y with small generalization error

P(x,y)∽D[h(x) ̸= y]

2 / 22

Linearly Separable Case

3 / 22

Linearly Separable Case

3 / 22

Non-Separable Case

4 / 22

Algebraic Set

Let P denote the polynomial ring in n variables

Definition 1 (Algebraic Set).

A set X ⊆ Rn is algebraic if there exists a finite set of
polynomials G ⊆ P, such that X is the set of common
roots of G.

Example 2 (Ball of Radius 1).

X = {x ∈ R2 | x21 + x22 = 1} ⇒ G = {x21 + x22 − 1}

5 / 22

Non-Separable Case

6 / 22

Non-Separable Case

6 / 22

Non-Separable Case

X+1 ⊆ {x ∈ R2 | x21 + x22 = 1}
X−1 ⊆ {x ∈ R2 | x21 + x22 = 2}

7 / 22

Non-Separable Case

X+1 ⊆ {x ∈ R2 | x21 + x22 = 1}
X−1 ⊆ {x ∈ R2 | x21 + x22 = 2}

g(x) = x21 + x
2
2 − 1

|g(x+1)| = 0
|g(x−1)| = 1

7 / 22

Non-Separable Case

g(x) = x21 + x
2
2 − 1

⇒

8 / 22

Non-Separable Case

g(x) = x21 + x
2
2 − 1

⇒

8 / 22

Vanishing Ideal

Data set X = {x1, . . . , xm} ⊆ Rn

Vanishing Ideal

IX = {f ∈ P | f (x) = 0 for all x ∈ X}

Finite set of generators G = {g1, . . . , gk} ⊆ IX such
that for all f ∈ IX , there exist h1, . . . , hk ∈ P with

f =

k∑
i=1

gihi .

[Cox et al., 2013]

9 / 22

Approximately Vanishing Polynomial

Definition 3 (Approximately Vanishing Polynomial).

Let X = {x1, . . . , xm} ⊆ Rn. A polynomial
g =

∑k
i=1 citi ∈ P is called (ψ, 1, τ)-approximately

vanishing (over X) if

1 MSE(g,X) := 1
m

∑m
i=1 g(xi)

2 ≤ ψ,
2 LTC(g) = ck = 1,
3 ∥g∥1 := ∥c∥1 ≤ τ .

Definition 4 (Approximate Vanishing Ideal).

Let X = {x1, . . . , xm} ⊆ Rn. The (ψ, τ)-approximate
vanishing ideal is the ideal generated by all

(ψ, 1, τ)-approximately vanishing polynomials.

10 / 22

Classification Pipeline

Algorithm 1: Pipeline

Input : Training sample S = {(x1, y1), . . . , (xm, ym)} with
X = {x1, . . . , xm} ⊆ Rn and y1, . . . , ym ∈ {−1,+1}.

X±1 ← {xj ∈ X | yj = ±1} ⊆ X
G±1 ← generating set of the approximate vanishing ideal Iψ

X±1

G = {g1, . . . , g|G|} ← G+1 ∪ G−1
for j = 1, . . . ,m do
x̃j ←

(
|g1(xj)|, . . . , |g|G|(xj)|

)⊺ ∈ R|G|

end

train linear classifier on X̃ = {x̃ | x ∈ X}

11 / 22

Algorithm

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI)

Input : X = {x1, . . . , xm} ⊆ Rn, ψ ≥ 0, and τ ≥ 2.
Output: G ⊆ P and O ⊆ T .
d ← 1, O ← {1}, G ← ∅
while ∂dO = {u1, . . . , uk} ≠ ∅ do
for i = 1, . . . , k do
g ← construct candidate polynomial
if g vanishes approximately then
G ← G ∪ {g}

else
O = {t1, . . . , tℓ} ← O ∪ {ui}

end

end

d ← d + 1
end

12 / 22

Algorithm

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI)

Input : X = {x1, . . . , xm} ⊆ Rn, ψ ≥ 0, and τ ≥ 2.
Output: G ⊆ P and O ⊆ T .

d ← 1, O ← {1}, G ← ∅
while ∂dO = {u1, . . . , uk} ≠ ∅ do
for i = 1, . . . , k do
g ← construct candidate polynomial
if g vanishes approximately then
G ← G ∪ {g}

else
O = {t1, . . . , tℓ} ← O ∪ {ui}

end

end

d ← d + 1
end

12 / 22

Algorithm

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI)

Input : X = {x1, . . . , xm} ⊆ Rn, ψ ≥ 0, and τ ≥ 2.
Output: G ⊆ P and O ⊆ T .
d ← 1, O ← {1}, G ← ∅
while ∂dO = {u1, . . . , uk} ≠ ∅ do
for i = 1, . . . , k do
g ← constructed candidate polynomial
if g vanishes approximately then
G ← G ∪ {g}

else
O = {t1, . . . , tℓ} ← O ∪ {ui}

end

end

d ← d + 1
end

12 / 22

Algorithm: Border

Let T denote the set of monomials in n variables

Definition 5 (Border).

Let O ⊆ T . The (degree-d) border of O is defined as
∂dO = {u ∈ Td : t ∈ O≤d−1 for all t ∈ T≤d−1 such that t | u}.

Example 6 (Simple Border Example).

Let n = 2 and O = {1, x , y , xy , y 2}. Then, ∂3O = {xy 2, y 3}.

y 3 xy 3 x2y 3 x3y 3

y 2 xy 2 x2y 2 x3y 2

y xy x2y x3y

1 x x2 x3

13 / 22

Algorithm

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI)

Input : X = {x1, . . . , xm} ⊆ Rn, ψ ≥ 0, and τ ≥ 2.
Output: G ⊆ P and O ⊆ T .
d ← 1, O ← {1}, G ← ∅
while ∂dO = {u1, . . . , uk} ≠ ∅ do
for i = 1, . . . , k do

g ← constructed candidate polynomial
if g vanishes approximately then
G ← G ∪ {g}

else
O = {t1, . . . , tℓ} ← O ∪ {ui}

end

end

d ← d + 1
end

14 / 22

Algorithm: Candidate Polynomial

X = {x1, . . . , xm} ⊆ Rn

O = {t1, . . . , tℓ} ⊆ T and let A := O(X) ∈ Rm×ℓ

u ∈ ∂dO ⊆ T and let b := u(X) ∈ Rm

Solve c∗ ∈ argmin∥c∥1≤τ
1
m∥b+ Ac∥

2
2

g ← u +
∑ℓ
i=1 c

∗
i ti

Theorem 7 (Wirth and Pokutta, 2022).

If there exists a (ψ, 1, τ)-approximately vanishing
polynomial, then g is one of them.

15 / 22

Algorithm

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI)

Input : X = {x1, . . . , xm} ⊆ Rn, ψ ≥ 0, and τ ≥ 2.
Output: G ⊆ P and O ⊆ T .
d ← 1, O ← {1}, G ← ∅
while ∂dO = {u1, . . . , uk} ≠ ∅ do
for i = 1, . . . , k do
g ← constructed candidate polynomial
if g vanishes approximately then

G ← G ∪ {g}
else

O = {t1, . . . , tℓ} ← O ∪ {ui}
end

end

d ← d + 1
end

16 / 22

Computational Complexity: Theory

Theorem 8 (Complexity [Wirth and Pokutta, 2022]).

Let X = {x1, . . . , xm} ⊆ Rn, ψ ∈ [0, 1[, τ ≥ 2, and
(G,O) = OAVI(X , ψ, τ).
Time: O((|G|+ |O|)2 + (|G|+ |O|)TORACLE).
Space: O((|G|+ |O|)m + SORACLE).

|G|+ |O| = O(mn) [Limbeck, 2013, Livni et al.,
2013, Wirth and Pokutta, 2022]

Corollary 9.

Time: O(m3)

Space: O(m2)

17 / 22

Computational Complexity: Experiment

18 / 22

Computational Complexity: Theory II

Time: O((|G|+ |O|)2 + (|G|+ |O|)TORACLE).
Space: O((|G|+ |O|)m + SORACLE).

Theorem 10 ([Wirth et al., 2022]).

Let X = {x1, . . . , xm} ⊆ [0, 1]n, ψ ∈]0, 1[,
D = ⌈− log(ψ)/ log(4)⌉, τ ≥ (3/2)D, and
(G,O) = OAVI(X , ψ, τ). Then, |G|+ |O| ≤

(
D+n
D

)
.

Corollary 11.

Time: O(m3)⇒ O(m)
Space: O(m2)⇒ O(m)

19 / 22

Learning Guarantees

Theorem 12 ([Wirth and Pokutta, 2022, Wirth et al., 2022]).

Let X ⊆ [−1, 1]n, let ψ ∈]0, 1[, let D = ⌈− log(ψ)/ log(4)⌉, let
τ ≥ (3/2)D , let k =

(
D+n
D

)
≤

(
e(D+n)
D

)D
, and let

X = {x1, . . . , xm} ∈ Xm be drawn i.i.d. according to a distribution
D. Let (G,O) = OAVI(X , ψ, τ). Then, for any δ > 0, with
probability at least 1− δ, the following inequality holds for all
g ∈ G:

Ex∽D [MSE(g, {x})] ≤ MSE(g,X)

+ 4τ2
√
2k log(2(n + 1)k)

m
+ 12τ2

√
log(2δ−1)

2m
.

20 / 22

Conclusion

Contributions

Learning Guarantees [Wirth and Pokutta, 2022]

Computational complexity depends linearly on the

number of samples [Wirth et al., 2022]

Open Problems

Learning guarantees for related methods

A ”better” notion than approximate vanishing ideal

21 / 22

References I

D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms: an

introduction to computational algebraic geometry and commutative

algebra. Springer Science & Business Media, 2013.

J. Limbeck. Computation of approximate border bases and applications.

2013.

R. Livni, D. Lehavi, S. Schein, H. Nachliely, S. Shalev-Shwartz, and

A. Globerson. Vanishing component analysis. In Proceedings of the

International Conference on Machine Learning, pages 597–605. PMLR,

2013.

E. Wirth and S. Pokutta. Conditional gradients for the approximately

vanishing ideal. arXiv preprint arXiv:2202.03349, 2022.

E. Wirth, H. Kera, and S. Pokutta. Approximate vanishing ideal

computations at scale. arXiv preprint arXiv:2207.01236, 2022.

22 / 22

	References

