Approximate Vanishing Ideal Computations at Scale

Elias Wirth^{1,2} Hiroshi Kera³ Sebastian Pokutta^{1,2}

¹Technische Universität Berlin

²Zuse Institute Berlin

³Chiba University

September 19, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1/22

Binary Classification

- Input space $\mathcal{X} \subseteq \mathbb{R}^n$ and output space $\mathcal{Y} = \{-1, +1\}$
- Training sample

$$S = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$$

drawn *i.i.d.* from some unknown distribution \mathcal{D}

• Determine a hypothesis $h \colon \mathcal{X} \to \mathcal{Y}$ with small generalization error

 $\mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}}[h(\mathbf{x}) \neq y]$

2/22

Linearly Separable Case

Linearly Separable Case

Algebraic Set

• Let ${\mathcal P}$ denote the polynomial ring in ${\it n}$ variables

Definition 1 (Algebraic Set).

A set $X \subseteq \mathbb{R}^n$ is *algebraic* if there exists a finite set of polynomials $\mathcal{G} \subseteq \mathcal{P}$, such that X is the set of common roots of \mathcal{G} .

Example 2 (Ball of Radius 1). $X = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1 \} \Rightarrow \mathcal{G} = \{ x_1^2 + x_2^2 - 1 \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$X^{+1} \subseteq \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1 \}$ $X^{-1} \subseteq \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 2 \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $X^{+1} \subseteq \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1 \}$ $X^{-1} \subseteq \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 2 \}$

$$g(\mathbf{x}) = x_1^2 + x_2^2 - 1$$
$$|g(\mathbf{x}^{+1})| = 0$$
$$|g(\mathbf{x}^{-1})| = 1$$

<ロト<部ト<注ト<注ト 注 つへで 7/22

Vanishing Ideal

• Data set
$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \subseteq \mathbb{R}^n$$

• Vanishing Ideal

$$\mathcal{I}_X = \{ f \in \mathcal{P} \mid f(\mathbf{x}) = 0 \text{ for all } \mathbf{x} \in X \}$$

• Finite set of generators $\mathcal{G} = \{g_1, \ldots, g_k\} \subseteq \mathcal{I}_X$ such that for all $f \in \mathcal{I}_X$, there exist $h_1, \ldots, h_k \in \mathcal{P}$ with

$$f=\sum_{i=1}^k g_i h_i$$

[Cox et al., 2013]

Approximately Vanishing Polynomial

Definition 3 (Approximately Vanishing Polynomial).

Let
$$X = {\mathbf{x}_1, ..., \mathbf{x}_m} \subseteq \mathbb{R}^n$$
. A polynomial $g = \sum_{i=1}^k c_i t_i \in \mathcal{P}$ is called $(\psi, 1, \tau)$ -approximately vanishing (over X) if

•
$$\mathsf{MSE}(g, X) := \frac{1}{m} \sum_{i=1}^{m} g(\mathbf{x}_i)^2 \le \psi$$
,

• LTC
$$(g) = c_k = 1$$
,

3
$$\|g\|_1 := \|\mathbf{c}\|_1 \le \tau$$
.

Definition 4 (Approximate Vanishing Ideal).

Let $X = {\mathbf{x}_1, ..., \mathbf{x}_m} \subseteq \mathbb{R}^n$. The (ψ, τ) -approximate vanishing ideal is the ideal generated by all $(\psi, 1, \tau)$ -approximately vanishing polynomials.

Classification Pipeline

Algorithm 1: Pipeline

Input : Training sample $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ with $X = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \subseteq \mathbb{R}^n \text{ and } y_1, \dots, y_m \in \{-1, +1\}.$ $X^{\pm 1} \leftarrow \{\mathbf{x}_j \in X \mid y_j = \pm 1\} \subseteq X$ $\mathcal{G}^{\pm 1} \leftarrow \text{generating set of the approximate vanishing ideal } \mathcal{I}_{X^{\pm 1}}^{\psi}$ $\mathcal{G} = \{g_1, \dots, g_{|\mathcal{G}|}\} \leftarrow \mathcal{G}^{+1} \cup \mathcal{G}^{-1}$ for $j = 1, \dots, m$ do $\mid \tilde{\mathbf{x}}_j \leftarrow (|g_1(\mathbf{x}_j)|, \dots, |g_{|\mathcal{G}|}(\mathbf{x}_j)|)^{\mathsf{T}} \in \mathbb{R}^{|\mathcal{G}|}$ end

train linear classifier on $\tilde{X} = { \mathbf{\tilde{x}} \mid \mathbf{x} \in X }$

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI) **Input** : $X = {\mathbf{x}_1, \dots, \mathbf{x}_m} \subset \mathbb{R}^n, \ \psi > 0$, and $\tau > 2$. **Output:** $\mathcal{G} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{T}$. $d \leftarrow 1, \mathcal{O} \leftarrow \{\mathbb{1}\}, \mathcal{G} \leftarrow \emptyset$ while $\partial_d \mathcal{O} = \{u_1, \ldots, u_k\} \neq \emptyset$ do for i = 1, ..., k do $q \leftarrow \text{construct candidate polynomial}$ if q vanishes approximately then $\mathcal{G} \leftarrow \mathcal{G} \cup \{q\}$ else $\mathcal{O} = \{t_1, \ldots, t_\ell\} \leftarrow \mathcal{O} \cup \{u_i\}$ end end $d \leftarrow d + 1$ end

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (DAVI) Input : $X = {\mathbf{x}_1, ..., \mathbf{x}_m} \subseteq \mathbb{R}^n, \ \psi \ge 0, \text{ and } \tau \ge 2.$ Output: $\mathcal{G} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{T}$. $d \leftarrow 1, \ \mathcal{O} \leftarrow {\mathbb{1}}, \ \mathcal{G} \leftarrow \emptyset$

while
$$\partial_d \mathcal{O} = \{u_1, \dots, u_k\} \neq \emptyset$$
 do
for $i = 1, \dots, k$ do
 $g \leftarrow \text{construct candidate polynomial}$
if g vanishes approximately then
 $| \mathcal{G} \leftarrow \mathcal{G} \cup \{g\}$
else
 $| \mathcal{O} = \{t_1, \dots, t_\ell\} \leftarrow \mathcal{O} \cup \{u_i\}$
end
 $d \leftarrow d + 1$
end

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI) **Input** : $X = {\mathbf{x}_1, \dots, \mathbf{x}_m} \subset \mathbb{R}^n, \ \psi > 0$, and $\tau > 2$. **Output:** $\mathcal{G} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{T}$. $d \leftarrow 1, \mathcal{O} \leftarrow \{\mathbb{1}\}, \mathcal{G} \leftarrow \emptyset$ while $\partial_d \mathcal{O} = \{u_1, \ldots, u_k\} \neq \emptyset$ do for i = 1, ..., k do $q \leftarrow \text{constructed candidate polynomial}$ if q vanishes approximately then $\mathcal{G} \leftarrow \mathcal{G} \cup \{q\}$ else $\bigcup \mathcal{O} = \{t_1, \ldots, t_\ell\} \leftarrow \mathcal{O} \cup \{u_i\}$ end end $d \leftarrow d + 1$ end

Algorithm: Border

• Let \mathcal{T} denote the set of monomials in *n* variables

Definition 5 (Border).

Let $\mathcal{O} \subseteq \mathcal{T}$. The *(degree-d) border* of \mathcal{O} is defined as $\partial_d \mathcal{O} = \{ u \in \mathcal{T}_d : t \in \mathcal{O}_{\leq d-1} \text{ for all } t \in \mathcal{T}_{\leq d-1} \text{ such that } t \mid u \}.$

Example 6 (Simple Border Example).

Let n = 2 and $\mathcal{O} = \{1, x, y, xy, y^2\}$. Then, $\partial_3 \mathcal{O} = \{xy^2, y^3\}$.

<i>y</i> ³	xy ³	x^2y^3	x^3y^3
y^2	xy^2	x^2y^2	x^3y^2
У	ху	x^2y	<i>x</i> ³ <i>y</i>
1	X	<i>x</i> ²	<i>x</i> ³

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI) **Input** : $X = {\mathbf{x}_1, \dots, \mathbf{x}_m} \subset \mathbb{R}^n, \ \psi > 0$, and $\tau > 2$. **Output:** $\mathcal{G} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{T}$. $d \leftarrow 1, \mathcal{O} \leftarrow \{1\}, \mathcal{G} \leftarrow \emptyset$ while $\partial_d \mathcal{O} = \{u_1, \ldots, u_k\} \neq \emptyset$ do for i = 1, ..., k do $q \leftarrow \text{constructed candidate polynomial}$ if q vanishes approximately then $\mathcal{G} \leftarrow \mathcal{G} \cup \{q\}$ else $| \mathcal{O} = \{t_1, \ldots, t_\ell\} \leftarrow \mathcal{O} \cup \{u_i\}$ end end $d \leftarrow d + 1$ end

Algorithm: Candidate Polynomial

•
$$X = {\mathbf{x}_1, ..., \mathbf{x}_m} \subseteq \mathbb{R}^n$$

• $\mathcal{O} = {t_1, ..., t_\ell} \subseteq \mathcal{T}$ and let $A := \mathcal{O}(X) \in \mathbb{R}^{m \times \ell}$
• $u \in \partial_d \mathcal{O} \subseteq \mathcal{T}$ and let $\mathbf{b} := u(X) \in \mathbb{R}^m$
• Solve $\mathbf{c}^* \in \operatorname{argmin}_{\|\mathbf{c}\|_1 \le \tau} \frac{1}{m} \|\mathbf{b} + A\mathbf{c}\|_2^2$
• $g \leftarrow u + \sum_{i=1}^{\ell} c_i^* t_i$

Theorem 7 (Wirth and Pokutta, 2022). If there exists a $(\psi, 1, \tau)$ -approximately vanishing polynomial, then g is one of them.

Algorithm 2: Oracle Approximate Vanishing Ideal Algorithm (OAVI) **Input** : $X = {\mathbf{x}_1, \dots, \mathbf{x}_m} \subseteq \mathbb{R}^n, \ \psi \ge 0$, and $\tau \ge 2$. **Output:** $\mathcal{G} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{T}$. $d \leftarrow 1, \mathcal{O} \leftarrow \{\mathbb{1}\}, \mathcal{G} \leftarrow \emptyset$ while $\partial_d \mathcal{O} = \{u_1, \ldots, u_k\} \neq \emptyset$ do for i = 1, ..., k do $q \leftarrow \text{constructed candidate polynomial}$ if q vanishes approximately then $\mathcal{G} \leftarrow \mathcal{G} \cup \{q\}$ else $\mathcal{O} = \{t_1, \ldots, t_\ell\} \leftarrow \mathcal{O} \cup \{u_i\}$ end end $d \leftarrow d + 1$ end

Computational Complexity: Theory

Theorem 8 (Complexity [Wirth and Pokutta, 2022]). Let $X = {\mathbf{x}_1, ..., \mathbf{x}_m} \subseteq \mathbb{R}^n$, $\psi \in [0, 1[, \tau \ge 2, and$ $(\mathcal{G}, \mathcal{O}) = \mathsf{OAVI}(X, \psi, \tau).$ • *Time:* $O((|\mathcal{G}| + |\mathcal{O}|)^2 + (|\mathcal{G}| + |\mathcal{O}|)T_{\mathsf{ORACLE}}).$ • *Space:* $O((|\mathcal{G}| + |\mathcal{O}|)m + S_{\mathsf{ORACLE}}).$

• $|\mathcal{G}| + |\mathcal{O}| = O(mn)$ [Limbeck, 2013, Livni et al., 2013, Wirth and Pokutta, 2022]

Corollary 9.

- *Time*: *O*(*m*³)
- *Space: O*(*m*²)

Computational Complexity: Experiment

Computational Complexity: Theory II

- Time: $O((|\mathcal{G}| + |\mathcal{O}|)^2 + (|\mathcal{G}| + |\mathcal{O}|)T_{\text{ORACLE}}).$
- Space: $O((|\mathcal{G}| + |\mathcal{O}|)m + S_{\text{ORACLE}}).$

Theorem 10 ([Wirth et al., 2022]).

Let
$$X = {\mathbf{x}_1, \dots, \mathbf{x}_m} \subseteq [0, 1]^n, \ \psi \in]0, 1[,$$

 $D = \lceil -\log(\psi) / \log(4) \rceil, \ \tau \ge (3/2)^D, \ and$
 $(\mathcal{G}, \mathcal{O}) = \texttt{OAVI}(X, \psi, \tau).$ Then, $|\mathcal{G}| + |\mathcal{O}| \le {D+n \choose D}.$

Corollary 11.

• Time:
$$O(m^3) \Rightarrow O(m)$$

• Space:
$$O(m^2) \Rightarrow O(m)$$

Learning Guarantees

Theorem 12 ([Wirth and Pokutta, 2022, Wirth et al., 2022]).

Let
$$\mathcal{X} \subseteq [-1, 1]^n$$
, let $\psi \in]0, 1[$, let $D = \lceil -\log(\psi)/\log(4) \rceil$, let $\tau \ge (3/2)^D$, let $k = {D+n \choose D} \le \left(\frac{e(D+n)}{D}\right)^D$, and let $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \in \mathcal{X}^m$ be drawn i.i.d. according to a distribution \mathcal{D} . Let $(\mathcal{G}, \mathcal{O}) = \text{OAVI}(\mathcal{X}, \psi, \tau)$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds for all $g \in \mathcal{G}$:

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\mathsf{MSE}(g, \{\mathbf{x}\}) \right] \leq \mathsf{MSE}(g, X) + 4\tau^2 \sqrt{\frac{2k \log(2(n+1)k)}{m}} + 12\tau^2 \sqrt{\frac{\log(2\delta^{-1})}{2m}}.$$

Conclusion

Contributions

- Learning Guarantees [Wirth and Pokutta, 2022]
- Computational complexity depends linearly on the number of samples [Wirth et al., 2022]

Open Problems

- Learning guarantees for related methods
- A "better" notion than approximate vanishing ideal

References I

- D. Cox, J. Little, and D. O'Shea. *Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra.* Springer Science & Business Media, 2013.
- J. Limbeck. Computation of approximate border bases and applications. 2013.
- R. Livni, D. Lehavi, S. Schein, H. Nachliely, S. Shalev-Shwartz, and A. Globerson. Vanishing component analysis. In *Proceedings of the International Conference on Machine Learning*, pages 597–605. PMLR, 2013.
- E. Wirth and S. Pokutta. Conditional gradients for the approximately vanishing ideal. *arXiv preprint arXiv:2202.03349*, 2022.
- E. Wirth, H. Kera, and S. Pokutta. Approximate vanishing ideal computations at scale. *arXiv preprint arXiv:2207.01236*, 2022.