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Abstract

Frank-Wolfe algorithms (FW) are popular first-
order methods for solving constrained convex
optimization problems that rely on a linear
minimization oracle instead of potentially ex-
pensive projection-like oracles. Many works
have identified accelerated convergence rates
under various structural assumptions on the op-
timization problem and for specific FW variants
when using line-search or short-step, requiring
feedback from the objective function. Little is
known about accelerated convergence regimes
when utilizing open-loop step-size rules, a.k.a.
FW with pre-determined step-sizes, which are
algorithmically extremely simple and stable.
We derive several accelerated convergence re-
sults for FW with open-loop step-size rules and
characterize a general setting for which FW
with open-loop step-size rules converges non-
asymptotically faster than FW with line-search
or short-step. Numerical experiments show that
vanilla FW with open-loop step-sizes can com-
pete with momentum-based FW variants.

The Frank-Wolfe algorithm

We study the constrained convex optimization
problem

min
G∈C

5 (G), (OPT)

where C ⊆ ℝ3 is a compact convex set and
5 : C → ℝ is a convex and !-smooth function.
Let G∗ ∈ argminG∈C 5 (G) be the constrained opti-
mal solution. We address (OPT) with the Frank-
Wolfe algorithm (FW) [4], which enjoys several
attractive properties for practitioners who work
at scale:

1 First-order.
2 Projection-free.
3 Affine-invariant.
4 Easy to implement.

Algorithm 1 Frank-Wolfe algorithm (FW) [4]
Input: G0 ∈ C, step-size rule [C ∈ [0, 1] for C ∈
{0, . . . , ) − 1}.

1: for C = 0, . . . , ) − 1 do
2: ?C ∈ argmin?∈C〈∇ 5 (GC), ? − GC〉
3: GC+1← (1 − [C)GC + [C?C

Why open-loop step-sizes [C = ℓ
C+ℓ,

where ℓ ∈ ℕ≥1?

1 Not governed by Wolfe’s lower bound [12].
2 Problem-agnostic.
3 Easy to compute since no knowledge of the
smoothness constant is required.

Numerical experiments: logistic
regression

We consider the problem of logistic regression,
which for feature vectors 01, . . . , 0< ∈ ℝ3, label
vector 1 ∈ {−1, +1}<, ? ∈ ℝ≥1, and radius A > 0,
leads to the problem formulation

min
G∈ℝ3

1
<

<∑
8=1

log(1 + exp(−180ᵀ8 G))

subject to ‖G‖? ≤ A.
For ? ∈ {1, 2, 5} and A = 1, we compare FW, the
primal-averaging Frank-Wolfe algorithm (PAFW)
[9], and the momentum-guided Frank-Wolfe al-
gorithm (MFW) [11], with open-loop step-sizes
[C =

ℓ
C+ℓ, where ℓ ∈ {2, 6}, on the Gisette dataseta

[7]. Results are presented in Figure 1:

1 On uniformly convex sets, all algorithms
converge at rates of order O(1/Cℓ).

2 Acceleration of momentum-based variants
relies on choice of ℓ.

3 Vanilla FW with open-loop step-sizes
competes with momentum-based variants.

aAvailable online at https://archive.ics.uci.edu/ml/datasets/Gisette.

Results

References Region C Objective 5 Location of G∗ Rate Step-size rule
[8] - - unrestricted O(1/C) any
[6] - strongly convex interior O(4−C) line-search, short-step

This paper - strongly convex interior O(1/C2) open-loop [C = 4
C+4

[10, 2, 3] strongly convex
‖∇ 5 (G)‖2 ≥ _ > 0

for all G ∈ C unrestricted O(4−C) line-search, short-step

This paper strongly convex
‖∇ 5 (G)‖2 ≥ _ > 0

for all G ∈ C unrestricted O(1/C2) open-loop [C = 4
C+4

This paper strongly convex
‖∇ 5 (G)‖2 ≥ _ > 0

for all G ∈ C unrestricted O(1/Cℓ/2) open loop [C = ℓ
C+ℓ

for ℓ ∈ ℕ≥4

[5] strongly convex strongly convex unrestricted O(1/C2) line-search, short-step
This paper strongly convex strongly convex unrestricted O(1/C2) open-loop [C = 4

C+4
[12] polytope strongly convex interior of face Ω(1/C1+Y)∗ line-search, short-step
[1] polytope strongly convex interior of face O(1/C2)∗ open-loop [C = 2

C+2
This paper polytope strongly convex interior of face O(1/C2) open-loop [C = 4

C+4
Table 1: Comparison of convergence rates for the Frank-Wolfe algorithm under different assumptions, where G∗ ∈ argminG∈C 5 (G).

Figure 1: Logistic regression for different ℓ?-balls, ? ∈ {1, 2, 5}. The H-axis represents the minimum primal gap.
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