Acceleration of Frank-Wolfe Algorithms with Open-Loop Step-Sizes

Thomas Kerdreux ² Sebastian Pokutta ^{1,3} Elias Wirth ¹

¹Berlin Institute of Technology, ²Geolabe LLC, ³Zuse Institute Berlin

Abstract

Frank-Wolfe algorithms (FW) are popular firstorder methods for solving constrained convex optimization problems that rely on a linear minimization oracle instead of potentially expensive projection-like oracles. Many works have identified accelerated convergence rates under various structural assumptions on the optimization problem and for specific FW variants when using line-search or short-step, requiring feedback from the objective function. Little is known about accelerated convergence regimes when utilizing open-loop step-size rules, a.k.a. FW with pre-determined step-sizes, which are algorithmically extremely simple and stable. We derive several accelerated convergence results for FW with open-loop step-size rules and characterize a general setting for which FW with open-loop step-size rules converges nonasymptotically faster than FW with line-search or short-step. Numerical experiments show that vanilla FW with open-loop step-sizes can compete with momentum-based FW variants.

The Frank-Wolfe algorithm

We study the constrained convex optimization problem

$$\min_{x \in C} f(x), \qquad (OPT)$$

where $C \subseteq \mathbb{R}^d$ is a compact convex set and $f: C \to \mathbb{R}$ is a convex and L-smooth function. Let $x^* \in \operatorname{argmin}_{x \in C} f(x)$ be the constrained optimal solution. We address (OPT) with the *Frank*-Wolfe algorithm (FW) [4], which enjoys several attractive properties for practitioners who work at scale:

- First-order.
- Projection-free.
- ³ Affine-invariant.
- Easy to implement.

Algorithm 1 Frank-Wolfe algorithm (FW) [4]

Input: $x_0 \in C$, step-size rule $\eta_t \in [0,1]$ for $t \in$ $\{0,\ldots,T-1\}.$

1: **for**
$$t = 0, ..., T - 1$$
 do

2:
$$p_t \in \operatorname{argmin}_{p \in C} \langle \nabla f(x_t), p - x_t \rangle$$

3:
$$x_{t+1} \leftarrow (1 - \eta_t) x_t + \eta_t p_t$$

Why open-loop step-sizes $\eta_t = \frac{\ell}{t+\ell}$, where $\ell \in \mathbb{N}_{>1}$?

- •Not governed by Wolfe's lower bound [12].
- Problem-agnostic.
- Beasy to compute since no knowledge of the smoothness constant is required.

Numerical experiments: logistic regression

We consider the problem of logistic regression, which for feature vectors $a_1, \ldots, a_m \in \mathbb{R}^d$, label vector $b \in \{-1, +1\}^m$, $p \in \mathbb{R}_{\geq 1}$, and radius r > 0, leads to the problem formulation

$$\min_{x \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-b_i a_i^\mathsf{T} x))$$

subject to $||x||_p \le r$.

For $p \in \{1, 2, 5\}$ and r = 1, we compare FW, the primal-averaging Frank-Wolfe algorithm (PAFW) [9], and the momentum-guided Frank-Wolfe algorithm (MFW) [11], with open-loop step-sizes $\eta_t = \frac{\ell}{t+\ell}$, where $\ell \in \{2,6\}$, on the Gisette dataset [7]. Results are presented in Figure 1:

- On uniformly convex sets, all algorithms converge at rates of order $O(1/t^{\ell})$.
- Acceleration of momentum-based variants relies on choice of ℓ .
- Vanilla FW with open-loop step-sizes competes with momentum-based variants.

Results

D C	D • 0	01.	T • C 34		. 1
References	Region C	Objective f	Location of x^*	Rate	Step-size rule
[8]	-	-	unrestricted	O(1/t)	any
[6]	_	strongly convex	interior	$O(e^{-t})$	line-search, short-step
This paper	_	strongly convex	interior	$O(1/t^2)$	open-loop $\eta_t = \frac{4}{t+4}$
	strongry convex	for all $x \in C$	umestricted	$O(e^{-t})$	line-search, short-step
This paper	strongly convex	$\ \nabla f(x)\ _2 \ge \lambda > 0$ for all $x \in C$	unrestricted	$O(1/t^2)$	open-loop $\eta_t = \frac{4}{t+4}$
This paper	strongly convex	$\ \nabla f(x)\ _2 \ge \lambda > 0$ for all $x \in C$	unrestricted	$O(1/t^{\ell/2})$	open loop $\eta_t = \frac{\ell}{t+\ell}$ for $\ell \in \mathbb{N}_{\geq 4}$
[5]	strongly convex	strongly convex	unrestricted	$O(1/t^2)$	line-search, short-step
This paper	strongly convex	strongly convex	unrestricted	$O(1/t^2)$	open-loop $\eta_t = \frac{4}{t+4}$
[12]	polytope	strongly convex	interior of face	$\Omega(1/t^{1+\varepsilon})^*$	_
[1]	polytope	strongly convex	interior of face	$O(1/t^2)^*$	open-loop $\eta_t = \frac{2}{t+2}$
This paper	polytope	strongly convex	interior of face	$O(1/t^2)$	open-loop $\eta_t = \frac{4}{t+4}$

: Comparison of convergence rates for the Frank-Wolfe algorithm under different assumptions, where $x^* \in \operatorname{argmin}_{x \in C} f(x)$.

Figure 1: Logistic regression for different ℓ_p -balls, $p \in \{1, 2, 5\}$. The y-axis represents the minimum primal gap.

References

- [1] Francis Bach. On the effectiveness of richardson extrapolation in data science. SIAM Journal on Mathematics of Data Science, 3(4):1251–1277, 2021.
- [2] Vladimir Fedorovich Demianov and Aleksandr Moiseevich Rubinov. Approximate methods in optimization problems. Number 32. Elsevier Publishing Company, 1970.
- [3] Joseph C Dunn. Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM Journal on Control and Optimization, 17(2):187–211, 1979.
- programming. Naval Research Logistics Quarterly, 3(1-2):95–110,
- method over strongly-convex sets. In Proceedings of the Interna-
- tional Conference on Machine Learning. PMLR, 2015.

'away step'. Mathematical Programming, 35(1):110-119, 1986.

- [7] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar):1157–1182, 2003.
- [8] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the International Conference on Machine Learning, pages 427–435. PMLR, 2013.
- [9] Guanghui Lan. The complexity of large-scale convex programming under a linear optimization oracle. arXiv preprint arXiv:1309.5550, 2013.
- [4] Marguerite Frank and Philip Wolfe. An algorithm for quadratic [10] Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 6(5):1–50, 1966.
- [5] Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe [11] Bingcong Li, Mario Coutino, Georgios B Giannakis, and Geert Leus. A momentum-guided frank-wolfe algorithm. IEEE Transactions on Signal Processing, 69:3597–3611, 2021.
- [6] Jacques Guélat and Patrice Marcotte. Some comments on Wolfe's [12] Philip Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming, pages 1–36, 1970.

^aAvailable online at https://archive.ics.uci.edu/ml/datasets/Gisette.