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Vanishing ideal

Given data set 𝑋 = {x1, . . . , x𝑚} ⊆ ℝ𝑛,

I𝑋 = { 𝑓 ∈ ℝ[𝑥1, . . . , 𝑥𝑛] | 𝑓 (x) = 0 ∀x ∈ 𝑋},
the vanishing ideal, succinctly characterizes 𝑋.
By Hilbert’s basis theorem [1], there exists a fi-
nite number of generators 𝑔1, . . . , 𝑔𝑘 ∈ I𝑋, with
𝑘 ∈ ℕ, such that for any 𝑓 ∈ I𝑋, there exist
ℎ1, . . . , ℎ𝑘 ∈ ℝ[𝑥1, . . . , 𝑥𝑛] such that

𝑓 =

𝑘∑︁
𝑖=1

𝑔𝑖ℎ𝑖.

Feature transformations with
generators

Setting:

• Input space X ⊆ [−1, 1]𝑛
•Output space Y = [𝑘]
•Training sample
𝑆 = {(x1, 𝑦1), . . . , (x𝑚, 𝑦𝑚)} ∈ (X × Y)𝑚 drawn
𝑖.𝑖.𝑑. from some unknown distribution D

Goal:

•Determine a hypothesis ℎ : X → Y with small
generalization error ℙ(x,𝑦)∽D [ℎ(x) ≠ 𝑦]

Pipeline:

•Let 𝑋 = {x1, . . . , x𝑚}
•For all 𝑖 ∈ [𝑘], let 𝑋 𝑖 ⊆ 𝑋 denote the set of

feature vectors corresponding to class 𝑖
•For all 𝑖 ∈ [𝑘], construct a set of generators
G𝑖 = {𝑔(𝑖)

𝑗
} |G

𝑖 |
𝑗=1 for the vanishing ideal I𝑋 𝑖

•Transform samples x ∈ 𝑋 via the feature
transformation

x ↦→ x̃ =

(
. . . , |𝑔(𝑖)1 (x) |, . . . , |𝑔

(𝑖)
|G𝑖 |(x) |, . . .

)⊺
• 𝑆 = {(x̃, 𝑦) | (x, 𝑦) ∈ 𝑆} is linearly separable
•Train a linear kernel SVM on 𝑆

Open question:

•How to construct the sets of generators G𝑖?

Oracle approximate vanishing ideal
algorithm

Algorithm 1 Oracle approximate vanishing ideal al-
gorithm (OAVI)
Input: 𝑋 = {x1, . . . , x𝑚} ⊆ ℝ𝑛, 𝜓 ≥ 0, 𝜏 ≥ 2.
Output: G,O ⊆ ℝ[𝑥1, . . . , 𝑥𝑛].

1: 𝑑 ← 𝟙

2: O = {𝑡1}𝜎 ← {𝟙}𝜎
3: G ← ∅
4: while 𝜕𝑑O = {𝑢1, . . . , 𝑢𝑘}𝜎 ≠ ∅ do
5: for 𝑖 = 1, . . . , 𝑘 do
6: 𝑃← {y ∈ ℝ|O| | ∥y∥1 ≤ 𝜏 − 1}
7: c ∈ argmin𝑦∈𝑃

1
𝑚
∥O(𝑋)y + 𝑢𝑖(𝑋)∥22

8: 𝑔 ← ∑|O|
𝑗=1 𝑐 𝑗𝑡 𝑗 + 𝑢𝑖

9: if mse(𝑔, 𝑋) ≤ 𝜓 then
10: G ← G ∪ {𝑔}
11: else
12: O ← (O ∪ {𝑢𝑖})𝜎
13: 𝑑 ← 𝑑 + 1

•Generators vanishing on out-sample data [9]
•OAVI + linear kernel SVM inherit the margin

bound of the SVM [9]
•Sparse generators

Running time of OAVI is linear in the
number of samples 𝑚

Theorem. (Number-of-samples-agnostic bound
on |G| + |O|.) Let 𝑋 = {x1, . . . , x𝑚} ⊆ [0, 1]𝑛, 𝜓 ∈
]0, 1[, 𝐷 = ⌈− log(𝜓)/log(4)⌉, 𝜏 ≥ (3/2)𝐷, and
(G,O) = OAVI(𝑋, 𝜓, 𝜏). Then, OAVI terminates
after having constructed generators of degree
𝐷. Thus, |G| + |O| ≤

(𝐷+𝑛
𝐷

)
.

Main result

For the setting of our numerical experiments,
we prove that the running time of OAVI is
𝑂 (𝑚poly(𝑛)) instead of 𝑂 (𝑚3poly(𝑛)), as pre-
viously shown in [9].

Experiment: inverse Hessian boosting (IHB) and weak inverse Hessian
boosting (WIHB)

(a) Bank. (b) Htru. (c) Skin. (d) Synthetic.

Figure 1: Training time comparisons with fixed 𝜓 = 0.005, averaged over ten random runs with shaded standard deviations. Inverse
Hessian boosting (IHB) exploits inverse Hessian information to reduce the time required in OAVI to solve the convex subproblems.
Weak inverse Hessian boosting (WIHB) is a sparsity-preserving variant of IHB. CGAVI-IHB is faster than BPCGAVI-WIHB,
which is faster than BPCGAVI.

Experiment: comparison to the approximate Buchber-Möller algorithm (ABM)
and vanishing component analysis (VCA)

(a) Bank. (b) Htru. (c) Skin. (d) Synthetic.

Figure 2: Training time comparisons, averaged over ten random runs with shaded standard deviations. For small data sets bank, htru,
and skin, ABM and VCA are faster than OAVI, but for synthetic, the training times of ABM and VCA scale worse than OAVI’s.
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