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What is this talk about?

Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.
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What is this talk about?

Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.
Today: A brief overview of recent developments in conditional gradient methods.

Outline

® The basics: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
® Several examples:

® Recovering Dynamics from Noisy Data
® Deep Learning
® Robust Rate-Distortion Explanation

® High-performance Julia Package: FrankWolfe.jl
(Hyperlinked) References are not exhaustive; check references contained therein.
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Conditional Gradients
a.k.a. the Frank-Wolfe algorithm

—The Basics—
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]
1. Very versatile model

2. Can use various types of information about both f and P
3. Works very well in (continuous) real-world applications

4. At the core of many (all?) learning algorithms (albeit mostly non-convex case)
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]
Our setup.
1. Access to P. Linear Minimization Oracle (LMO): Given linear objective ¢ return

X « arg min clo.
veP
2. Access to f. First-Order Oracle (FO): Given x return

Vf(x) and  f(x).

= Complexity of convex optimization relative to LO/FO oracle
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Interlude: why LMOs?

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

LMO model has many advantages.

1. Includes explicit formulation via constraints

2. Some problems do not posess ‘small” formulations but have efficient LMOs.
Example: Matching Polytope [Rothvoss, 2014, Braun and Pokutta, 2015a,b, Braun et al., 2015, 2017b]

3. Allows modeling of compact convex constraints as long as we have an LMO.
Example: SDP cone

4. Often much faster than projection.
Example: nuclear norm. Largest singular vector (Lanczos method) vs. full SVD

5. LMO is a black box for the algorithms

6. For many LMOs of interest close form solutions available.
Example: ¢;-ball for LASSO regression.

For an overview see: [Combettes and Pokutta, 2021]
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R" — R be a differentiable function.
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Basic notions. Let f : R" — R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f) = fx) = (Vf(x),y —x).

In particular, all local minima are global minima.
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Letf : R* — R be a differentiable function.

Definition (Convexity)

For all x, y it holds:
CONVEXITY AND SMOOTHNESS
f(y) _f(x) 2 <Vf(X), y N x> ’ OO SMOOTHNESS
In particular, all local minima are global minima. \ 4 g

Definition (L-Smoothness)
For all x, y it holds:

STRONG
CONVEXITY

CONVEXITY

F) =) < (Vf @,y =)+ 51y~ xIP.
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 v « argmin(Vf(xs), v)
veP

4

5

Xpg1 X + y(vr — xp)
: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt
Algorithm Frank-Wolfe Algorithm (FW)
1. xg e P
2: fort=0toT—-1do
3 v arg mi}g(Vf(,\',), v)
4 xp X+ (o — x)
5. end for o

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt
Algorithm Frank-Wolfe Algorithm (FW)
1. xg e P
2: fort=0toT—1do
3 v « argmin(Vf(xs), v)
veP
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 vy «— argmin(Vf(x¢), v)

veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot
[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:

® Extremely simple and robust: no complicated data structures to maintain

Easy to implement: requires only the two oracles
Projection-free: feasibility convex combination and LO oracle

Sparsity: optimal solution is a convex combination of (usually) vertices

Affine invariance: no rescaling etc required
® Parameter-free: does not require any knowledge about the function or feasible region
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Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 vy «— argmin(Vf(x¢), v)

veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot
[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:
[ ]

Extremely simple and robust: no complicated data structures to maintain
® Fasy to implement: requires only the two oracles

® Projection-free: feasibility convex combination and LO oracle

® Sparsity: optimal solution is a convex combination of (usually) vertices

® Affine invariance: no rescaling etc required

® Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
® Suboptimal convergence rate of O(1/T)
® No iterate convergence in the classical sense
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1:

2.
3:
4
5

xg €P
fort=0toT—-1do
vt «— arg milgl(Vf(xt), v)
Ve

Xt < Xt + yi(or — xt)

: end for ot

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:

Extremely simple and robust: no complicated data structures to maintain

Easy to implement: requires only the two oracles

Projection-free: feasibility convex combination and LO oracle

Sparsity: optimal solution is a convex combination of (usually) vertices

Affine invariance: no rescaling etc required

Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:

Suboptimal convergence rate of O(1/T)
No iterate convergence in the classical sense

= Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl) ) < 22
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)

Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl) ) < 22

Proof Sketch.

By smoothness:

L 2
FCate1) = F) < (V). st =) + = s =l = s (VF ), 21 = )+~ oy =l

LP maximality and convexity: (Vf(x;), v; — xt) < (Vf(x), x* = x;) < f(x*) = f(x¢). Moreover, ||vy — x¢|| < D.

Thus:
LD?

flers) = f&) < A= y(fGe) = fG) + 77 =5-
By Induction (plugging in the guarantee + definition of y;):

2 \2AD? 4 LD _2LDXt+2) _ 2LD?
t+3) t+3 " (t+32 2 (t+3)2 T t+4’

flan) —f) < (1 4
by (t+2)(t +4) < (t+3)%
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A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plexand f = I|x]|2.
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Consider P = conv({ey, . .., en}) the probability sim-
plexand f = [lxI2.

Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
iterations we picked up at most ¢ vertices of P.
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Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
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flxe) > xeg)ﬂ?( s flx)=1/t,

Sc{er,....en}
|S|<t

Sebastian Pokutta - Conditional Gradients

8/33



A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plexand f = [lxI2.

Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
iterations we picked up at most ¢ vertices of P.

Easy to see. For any iterate x;:

f(xt)> min f(x)=1/t,
xeconv(S)
Sc{er,....en}

|S|<t
Thus lower bound. f(x;) —f(x*) = 3 - 1
= Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]
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Significant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Strongly convex case [Garber and Hazan, 2013, Lacoste-Julien and Jaggi, 2015, Lan and Zhou, 2016, Garber and Meshi, 2016]
2. Non-convex case [Lacoste-Julien, 2016]
3. Online case [Hazan and Kale, 2012]
4. Stochastic variants and adaptive gradients [Hazan and Luo, 2016, Redd et al,, 2016, Combettes et al, 2020]
5. Sharp functions and sharp regions [Kerdreux et al., 2019, 2021a,b]
6. Acceleration [Diakonikolas et al., 2020, Bach, 2020, Carderera et al., 2021a]
7. Specialized variants [Freund et al., 2017, Braun et al., 2017c, 2019b,a]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see upcoming survey!
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Conditional Gradient-based Identification
of Nonlinear Dynamics (CINDy)

—Recovering Dynamics from Noisy Data—

joint work with Alejandro Carderera, Christof Schiitte, Martin Weiser

[Carderera et al., 2021b]
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Physical Systems via ODEs

CINDy: Recovering Dynamics from Noisy Data
Physical systems described by ordinary differential equation.

(t) = F (x(t)),

where x(f) € R denotes the state of the system at time ¢.
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Physical Systems via ODEs

CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary differential equation.

(t) = F (x(t)),

where x(f) € R denotes the state of the system at time .

Usually. F: R? — R4 (usually) linear combination of simpler ansatz functions
D ={y; |ie[1,n]}withy; : RT - R:

— & —| [0
(1) = F (x(t)) = ETy(x(t)) = .

7

— & —| gy

where E € R"™ js a typically sparse matrix and (x(t)) = [1(x(¢)), -, zpn(x(t))]T € R™.
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Sparse Identification of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al., 2016]

X ox)

TN B

I, Sparse Regression to

s i the Dynamics

Focus on component-wise formulation of sparse recovery problem, and solve a
relaxation of:

m
i v — ET w12 .
i ;nxz Pl + allé;lo,
for each j € [[1,d] for a suitably chosen a > 0.

Note. Earlier approach via Grébner/Border Bases for homogeneous. [Heldt et al., 2009]
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Sparse Identification of Nonlinear Dynamics (SINDy)

CINDy: Recovering Dynamics from Noisy Data

[Brunton et al., 2016]

A-vortex shedding v, - POD mode 1 FullSimulation
"

Characteristics of SINDy.
1. Works on a very wide variety of dynamics
2. Recovers sparse dynamics very well in the noise-free case

3. However when data is noisy, picks up many auxiliary terms to explain noise.
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The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm  Fully-Corrective FW Algorithm
(FCFW)

:x0 €P, Sy « {x0}
: fort=0toT—-1do
v «— arg milgl(Vf(xt),v>
Ve

1
2
3
& Sy SiU{n}
5
6

Xt+1 €~ arg minxeconv(SHl)f(x)
: end for

[Holloway, 1974]
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2
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2
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The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm  Fully-Corrective FW Algorithm
(FCFW)

1: xg € P, Sp «— {x0}

2: fort=0toT—1do

3 v« argmin(Vf(xs), v)

veP

& Sy SiU{n}

5: Xt+] € arg minxeconv(SHl)f(x)

6: end for

[Holloway, 1974]

® Sparsity: FCFW offers much higher sparsity

® Speed: Convergence speed is (much) higher but
iterations very costly

® Projection-free: While still projection-free requires
solver for subproblems

Fully-Corrective FW Algorithm

= While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.
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Sparsity of different FW variants
CINDy: Recovering Dynamics from Noisy Data

Example. Recovery of a signal x* in ||.||7 norm, i.e., objective ||x — x*||%.

0 -
10 W
—— AFW
— FCFW
— == lower bound
IO" -
102 = .
1 1 1 1 i i 1 1 i
0 25 50 75 100 125 150 175 200
Sparsity of x;
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CINDy vs SINDy: comparison of the methods

CINDy: Recovering Dynamics from Noisy Data

SINDy.

Solves approximation of

m
min )" [l - £ Y(x)I3 + allE;lo,
£.crd
g]'ER i=1
via Least-Squares Step + Thresholding

CINDy.

Solves
min_[|X-&TW(X)|2
[1Elly,1 <a
Zernxd

via Fully-Corrective Frank-Wolfe (or similar)
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CINDy vs SINDy: comparison of the methods

CINDy: Recovering Dynamics from Noisy Data

SINDy.

Solves approximation of

m
min )" [l - £ Y(x)I3 + allE;lo,
£.cRrd
& €R i=1
via Least-Squares Step + Thresholding

Advantages of CINDy.
1. Better sparsity

2. Better noise tolerance

CINDy.

Solves

min_[|X-&TW(X)|2
[1Elly,1 <a

Zernxd

via Fully-Corrective Frank-Wolfe (or similar)

3. Allows for inclusion of additional constraints (e.g., conversation laws etc)

4. Control of coefficients due to simple ball with some radius a
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CINDy vs SINDy: a recovery example

CINDy: Recovering Dynamics from Noisy Data

Kuramoto model. d = 10 weakly-coupled identical oscillators. For oscillator i:

d
. K . .
X = w;+ 7 lem (x]- - xi) + hsin (x;)
]:

Error (Log) in recovery Total number of basis functions
SRR 1600 =
\ |- 2250
1550+ @Dy SINDY, - 2000
=1750
_ _ 1500+
3 K [=1500
S =]
3 3 M50+ 1250
5 5 ~1000
1400 =|

=750

1350 500

1300~ e e B 250
6 4 2 6 4 2
Noise (Log) Noise (Log)

Noise (Log)

Number of data points. 3000 generated from 100 experiments (30 per experiment with
additive random noise of 1.073.
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Sample Efficiency: Fermi-Pasta-Ulam-Tsingou model
CINDy: Recovering Dynamics from Noisy Data

m8
I =3
o o
S S
3 6 3
o o
£ £2
3 3
# #
4
3 o 3 o
g g 8 g
3 2 D 8 D
Q Q
£ [ !
3 g LI}
# T % =
0
3 3
S S
8 -2 8 -2
o o
£ £
3 3
# #
-4 -4
-8 -6 -4 -2 -8 -6 -4 -2
Noise (logio) Noise (log1o)

Left: differential formulation / Right: integral formulation.
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CINDy vs SINDy: sparsity matters - the most parsimonious model
CINDy: Recovering Dynamics from Noisy Data

Fermi-Pasta-Ulam-Tsingou model.

L sw9 10 SNDy
. .. CINDy
05+ -. True dynamic 0.5 =| = True dynamic
S 2
f‘%' 0.0~ , § 00 P, 3. =
& =
05~ \-/ 05+
-l T -0 T T T T
2 2 q 6 8
Osallator ID Oscillator ID
Kuramoto model.
90"
135° 45
180° 0
225 35
270°
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Stochastic Conditional Gradients

—Training Neural Networks with Frank-Wolfe—

joint work with Christoph Spiegel and Max Zimmer

[Pokutta et al., 2020]
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The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1: myg«—0
2: fort=0toT—-1do
3:  uniformly sampleii.d. iy,..., i, ~ [1,m]

& b
VL) — £ X, Va6

4

5. my (1= pg)mp_1 + pt VL(6y)
6: v «— argmingep (m;, v

70 Op1 O +ap(vr — 1)

8: end for

e.g., [Reddi et al., 2016]
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The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1. mp <0

2: fort=0toT—-1do

3:  uniformly sampleii.d. iy,..., i, ~ [1,m]
& VLO) « £ 2, VE,(6)

5 my < (1 — pg)mi—1 + pr VL(6;)

6: v «— argmingep (m;, v

7: Ory1 — O + at(vt -0

8: end for

e.g., [Reddi et al., 2016]

test set accuracy

—— SFW

—— SVRF
——— ORGFW
— MSFW
0 5 10 15 20 0 M ™M 3M
epochs gradients calculated
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The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1: myg«—0
2: fort=0toT—-1do
3:  uniformly sampleii.d. iy,..., i, ~ [1,m]

& b
VL) — £ X, Va6

4

5. my (1= pg)mp_1 + pt VL(6y)
6: v «— argmingep (m;, v
7.

8

: 9t+l — Gt + at(vt - Gt)
. end for

—— SFW
~— SVRF

1 —— ORGFW
e.g., [Reddi et al., 2016] —— MSFW
0%
0 5 10 15 20 0 M ™M 3M
epochs gradients calculated

® Convergence rate: In the non-convex stochastic
smooth case O(1/VT)-rate

® Speed: Works well for very large data sets due to
mini-batched gradients

SFW variants

® Projection-free: Remains projection-free and allows
for constraints
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Relevance maps under different optimizers / feasible regions

Training Neural Networks with Conditional Gradients
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Robust Rate-Distortion Explanations
via Conditional Gradients

joint work with Mathieu Besangon and Jan Macdonald

[Macdonald et al., 2022]
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Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

Expected Distortion of S.

D(S) =D(S5,®,x,V) = Ey.v

(@(x) @(y)ﬁ]

Stability of ® when varying outside of S
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Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Rate-Distortion function. )
R(é¢) := min{card(S) : D(S) < ¢} ‘
smallest set of fixings S
U
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Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) cb(y))z]

Stability of @ when varying outside of S

Rate-Distortion function. )
R(é¢) := min{card(S) : D(S) < ¢} ‘
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : [Islly < A}

given budet A find s with lowest distortion aka most relevant pixels
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Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Rate-Distortion function. )
R(é¢) := min{card(S) : D(S) < ¢} ‘
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : [Islly < A}

given budet A find s with lowest distortion aka most relevant pixels

= Structured optimization problem over ¢;-ball.
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Rate-Distortion Explanation: Examples

Discrete Optimization in Machine Learning

Input PGD 4000 Lagrange 0.05 Lazy AFW 4000

All methods had the same budget for picking relevant pixels. However, sparser solutions of Conditional
Gradients focus weight on most relevant pixels rather than spreading out.
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Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain

ordered relevance. [Macdonald et al., 2022]
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Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ¢;-constraint.
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Rate-Distortion Explanation: Ordered Relevance Test

Discrete Optimization in Machine Learning

08
k!
=1 -
Z 06
g
]
=
Z 04|
=
S
5 02
Z
g
0.0 T
10 D
0.8 |
2 0.6 |
£
2
g 04
0.2 |
0.0 T T T T
0% 20% 40% 60% 80% 100%
rate (non-randomized components)
. FW (MR-RDE) AFW (MR-RDE) s LCG (MR-RDE)
e LAFW (MR-RDE) PGD (L-RDE) sensitivity

Relevance ordering test results for STL-10. An average result over 50 images from the test set (5 images per class)

and 64 noise input samples per image is shown (shaded regions mark + standard deviation).
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FrankWolfe.jl

a high-performance Julia package
for Conditional Gradients

joint work with Mathieu Besancon and Alejandro Carderera

[Besangon et al., 2022]
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Overview and Features
FrankWolfe.jl

In a nutshell.

¢ Implemented in Julia
® Open source under MIT License

® Generic numeric types: reduced (16, 32, 64 bits) and extended (128, GNU MP)
precision, rationals

¢ Memory-saving mode, in-place gradient computations
® Scales well (solved some problems with 1B variables)

® Switch components - bring your own LMO / Vf / step size.
Give it a try.
using Pkg

Pkg.add ("FrankWolfe")
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Example
FrankWolfe.jl

using LinearAlgebra
using FrankWolfe

n = 1000
xp = rand(n)

f(x) = norm(x - xp) 2
function grad! (storage, x)
@. storage = 2 * (x - xp)

return nothing
end

# create a L_l-norm ball of radius 2.5
1lmo_radius = 2.5
lmo = FrankWolfe.LpNormLMO{Float64,1} (lmo_radius

x0 = FrankWolfe.compute_extreme_point (1lmo, zeros (n)

x_sol, _ = frank wolfe(f, grad!, 1lmo, x0)
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Shameless plug...

Thank you!

Conditional Gradient Methods

Gabor Braun, Alejandro Carderera, Cyrille W
Combettes, Hamed Hassani, Amin Karbasi, Aryan
Mokhtari, and Sebastian Pokutta

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103

Conditional Gradient Methods

Gabor Braun Alejandro Carderera Cyrille W. Combettes
Hamed Hassani Amin KarbasiAryan Mokhtari Sebastian Pokuta
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