Conditional Gradients
in Machine Learning

Sebastian Pokutta

Technische Universitit Berlin
and
Zuse Institute Berlin

pokutta@math.tu-berlin.de
@spokutta

Statistics and Data Science Seminar
Yale University

April 03, 2023

Berlin Mathematics Research Center

MATH*

mailto:pokutta@math.tu-berlin.de
https://twitter.com/spokutta
https://statistics.yale.edu/seminars
https://statistics.yale.edu/seminars
https://statistics.yale.edu/seminars
https://statistics.yale.edu/seminars

What is this talk about?

Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Sebastian Pokutta - Conditional Gradients 1/33

https://github.com/ZIB-IOL/FrankWolfe.jl

What is this talk about?

Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.

Sebastian Pokutta - Conditional Gradients 1/33

https://github.com/ZIB-IOL/FrankWolfe.jl

What is this talk about?

Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.

Today: A brief overview of recent developments in conditional gradient methods.

Sebastian Pokutta - Conditional Gradients

1/33

https://github.com/ZIB-IOL/FrankWolfe.jl

What is this talk about?

Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.
Today: A brief overview of recent developments in conditional gradient methods.

Outline

® The basics: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
® Several examples:

® Recovering Dynamics from Noisy Data
® Deep Learning
® Robust Rate-Distortion Explanation

® High-performance Julia Package: FrankWolfe.jl
(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta - Conditional Gradients 1/33

https://github.com/ZIB-IOL/FrankWolfe.jl

Conditional Gradients
a.k.a. the Frank-Wolfe algorithm

—The Basics—

Sebastian Pokutta - Conditional Gradients 2/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

Sebastian Pokutta - Conditional Gradients 3/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]

Sebastian Pokutta - Conditional Gradients 3/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]
1. Very versatile model

2. Can use various types of information about both f and P
3. Works very well in (continuous) real-world applications

4. At the core of many (all?) learning algorithms (albeit mostly non-convex case)

Sebastian Pokutta - Conditional Gradients

3/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]
Our setup.
1. Access to P. Linear Minimization Oracle (LMO): Given linear objective ¢ return

X « arg min clo.
veP

Sebastian Pokutta - Conditional Gradients 3/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]
Our setup.
1. Access to P. Linear Minimization Oracle (LMO): Given linear objective ¢ return
X « arg min clo.
veP
2. Access to f. First-Order Oracle (FO): Given x return

Vf(x) and f(x).

Sebastian Pokutta - Conditional Gradients 3/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

minf(x) (baseProblem)
x€eP

Source: [Jaggi, 2013]
Our setup.
1. Access to P. Linear Minimization Oracle (LMO): Given linear objective ¢ return

X « arg min clo.
veP
2. Access to f. First-Order Oracle (FO): Given x return

Vf(x) and f(x).

= Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta - Conditional Gradients 3/33

Interlude: why LMOs?

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

LMO model has many advantages.

1. Includes explicit formulation via constraints

2. Some problems do not posess ‘small” formulations but have efficient LMOs.
Example: Matching Polytope [Rothvoss, 2014, Braun and Pokutta, 2015a,b, Braun et al., 2015, 2017b]

3. Allows modeling of compact convex constraints as long as we have an LMO.
Example: SDP cone

4. Often much faster than projection.
Example: nuclear norm. Largest singular vector (Lanczos method) vs. full SVD

5. LMO is a black box for the algorithms

6. For many LMOs of interest close form solutions available.
Example: ¢;-ball for LASSO regression.

For an overview see: [Combettes and Pokutta, 2021]

Sebastian Pokutta - Conditional Gradients 4/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R" — R be a differentiable function.

Sebastian Pokutta - Conditional Gradients 5/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R" — R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f) = fx) = (Vf(x),y —x).

In particular, all local minima are global minima.

Sebastian Pokutta - Conditional Gradients

5/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R" — R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f) = fx) = (Vf(x),y —x).

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x, y it holds:

F) =) < (Vf @,y =)+ 51y~ xIP.

Sebastian Pokutta - Conditional Gradients 5/33

The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Letf : R* — R be a differentiable function.

Definition (Convexity)

For all x, y it holds:
CONVEXITY AND SMOOTHNESS
f(y) _f(x) 2 <Vf(X), y N x> ’ OO SMOOTHNESS
In particular, all local minima are global minima. \ 4 g

Definition (L-Smoothness)
For all x, y it holds:

STRONG
CONVEXITY

CONVEXITY

F) =) < (Vf @,y =)+ 51y~ xIP.

Sebastian Pokutta - Conditional Gradients 5/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 v « argmin(Vf(xs), v)
veP

4

5

Xpg1 X + y(vr — xp)
: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 v « argmin(Vf(xs), v)
veP

4

5

Xpg1 X + y(vr — xp)
: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—-1do

3 v« argmin(Vf(x;),v)
veP

4

5

Xpg1 X + y(vr — xp)
: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt
Algorithm Frank-Wolfe Algorithm (FW)
1. xg e P
2: fort=0toT—-1do
3 v arg mi}g(Vf(,\',), v)
4 xp X+ (o — x)
5. end for o

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt
Algorithm Frank-Wolfe Algorithm (FW)
1. xg e P
2: fort=0toT—1do
3 v « argmin(Vf(xs), v)
veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt
Algorithm Frank-Wolfe Algorithm (FW)
1. xg e P
2: fort=0toT—1do
3 v « argmin(Vf(xs), v)
veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt
Algorithm Frank-Wolfe Algorithm (FW)
1. xg e P
2: fort=0toT—1do
3 v « argmin(Vf(xs), v)
veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 vy «— argmin(Vf(x¢), v)

veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot
[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:

® Extremely simple and robust: no complicated data structures to maintain

Easy to implement: requires only the two oracles
Projection-free: feasibility convex combination and LO oracle

Sparsity: optimal solution is a convex combination of (usually) vertices

Affine invariance: no rescaling etc required
® Parameter-free: does not require any knowledge about the function or feasible region

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Xt

Algorithm Frank-Wolfe Algorithm (FW)

1. xg e P

2: fort=0toT—1do

3 vy «— argmin(Vf(x¢), v)

veP
4 Xpy1 < Xt + V(0 — Xxt)
5. end for ot
[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:
[]

Extremely simple and robust: no complicated data structures to maintain
® Fasy to implement: requires only the two oracles

® Projection-free: feasibility convex combination and LO oracle

® Sparsity: optimal solution is a convex combination of (usually) vertices

® Affine invariance: no rescaling etc required

® Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
® Suboptimal convergence rate of O(1/T)
® No iterate convergence in the classical sense

Sebastian Pokutta - Conditional Gradients 6/33

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1:

2.
3:
4
5

xg €P
fort=0toT—-1do
vt «— arg milgl(Vf(xt), v)
Ve

Xt < Xt + yi(or — xt)

: end for ot

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:

Extremely simple and robust: no complicated data structures to maintain

Easy to implement: requires only the two oracles

Projection-free: feasibility convex combination and LO oracle

Sparsity: optimal solution is a convex combination of (usually) vertices

Affine invariance: no rescaling etc required

Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:

Suboptimal convergence rate of O(1/T)
No iterate convergence in the classical sense

= Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta - Conditional Gradients 6 /33

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl)) < 22

Sebastian Pokutta - Conditional Gradients 7/33

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)

Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl)) < 22

Proof Sketch.

By smoothness:

L 2
fleren) = fQr) < (VF(xe), Xp1 — %) + %llxm = xtl? =y (VF(xp), 00 —) + —||17t - x]%.

Sebastian Pokutta - Conditional Gradients

|
7/3

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl)) < 22

Proof Sketch.

By smoothness:

L 2
fleren) = fQr) < (VF(xe), Xp1 — %) + %llxm = xtl? =y (VF(xp), 00 —) + —||Ut - x]%.

LP maximality and convexity: (Vf(x;), v; — xt) < (Vf(x), x* = x;) < f(x*) = f(x¢). Moreover, ||vy — x¢|| < D.

Sebastian Pokutta - Conditional Gradients

|
7/3

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)

Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl)) < 22

Proof Sketch.

By smoothness:

L 2
fleren) = fQr) < (VF(xe), Xp1 — %) + %llxm = xtl? =y (VF(xp), 00 —) + —||Ut - x]%.

LP maximality and convexity: (Vf(x;), v; — xt) < (Vf(x), x* = x;) < f(x*) = f(x¢). Moreover, ||vy — x¢|| < D.

Thus:

flor) = F) < (L= y) () = F) + 2 Eo LD?

Sebastian Pokutta - Conditional Gradients

|
7/3

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)

Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
fl)) < 22

Proof Sketch.

By smoothness:

L 2
FCate1) = F) < (V). st =) + = s =l = s (VF), 21 =)+~ oy =l

LP maximality and convexity: (Vf(x;), v; — xt) < (Vf(x), x* = x;) < f(x*) = f(x¢). Moreover, ||vy — x¢|| < D.

Thus:
LD?

flers) = f&) < A= y(fGe) = fG) + 77 =5-
By Induction (plugging in the guarantee + definition of y;):

2 \2AD? 4 LD _2LDXt+2) _ 2LD?
t+3) t+3 " (t+32 2 (t+3)2 T t+4’

flan) —f) < (1 4
by (t+2)(t +4) < (t+3)%

Sebastian Pokutta - Conditional Gradients

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plexand f = I|x]|2.

Sebastian Pokutta - Conditional Gradients 8/33

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plexand f = I|x]|2.

Clearly. arg minyep f(x) = x* = %e with f(x*) = %

Sebastian Pokutta - Conditional Gradients

8/33

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plexand f = [lxI2.

Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
iterations we picked up at most ¢ vertices of P.

Sebastian Pokutta - Conditional Gradients 8/33

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plex and f = [lxI2.

Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
iterations we picked up at most ¢ vertices of P.

Easy to see. For any iterate x;:

flxe) > xeg)ﬂ?(s flx)=1/t,

Sc{er,....en}
|S|<t

Sebastian Pokutta - Conditional Gradients

8/33

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plexand f = [lxI2.

Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
iterations we picked up at most ¢ vertices of P.

Easy to see. For any iterate x;:

f(xt)> min f(x)=1/t,
xeconv(S)
Sc{er,....en}

|S|<t
Thus lower bound. f(x;) —f(x*) = 3 - 1
= Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta - Conditional Gradients 8/33

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({ey, . .., en}) the probability sim-
plex and f = [lxI2.
Clearly. argmingepf(x) = x* = %e with f(x*) = %

Observe. Starting from any vertex e; after t < n
iterations we picked up at most ¢ vertices of P.

Easy to see. For any iterate x;:

f(xt)> min f(x)=1/t,
xeconv(S)
Sc{er,....en}
|S|<t

Thus lower bound. f(x;) — f(x*) >

=
Nl

= Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta - Conditional Gradients

Q h
<<
o
oL
<
=
®
['%
°
S
S B e
2t 2 2 2*
LOG ITERATIONS
o
g 50
J -75
g..
g_(s
-
Qs |

— ve: V1

— e vT - N

»

LOG ITERATIONS

8/33

Significant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Strongly convex case [Garber and Hazan, 2013, Lacoste-Julien and Jaggi, 2015, Lan and Zhou, 2016, Garber and Meshi, 2016]
2. Non-convex case [Lacoste-Julien, 2016]
3. Online case [Hazan and Kale, 2012]
4. Stochastic variants and adaptive gradients [Hazan and Luo, 2016, Redd et al,, 2016, Combettes et al, 2020]
5. Sharp functions and sharp regions [Kerdreux et al., 2019, 2021a,b]
6. Acceleration [Diakonikolas et al., 2020, Bach, 2020, Carderera et al., 2021a]
7. Specialized variants [Freund et al., 2017, Braun et al., 2017c, 2019b,a]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see upcoming survey!

Sebastian Pokutta - Conditional Gradients 9/33

Conditional Gradient-based Identification
of Nonlinear Dynamics (CINDy)

—Recovering Dynamics from Noisy Data—

joint work with Alejandro Carderera, Christof Schiitte, Martin Weiser

[Carderera et al., 2021b]

Sebastian Pokutta - Conditional Gradients 10/33

Physical Systems via ODEs

CINDy: Recovering Dynamics from Noisy Data
Physical systems described by ordinary differential equation.

(t) = F (x(t)),

where x(f) € R denotes the state of the system at time ¢.

Sebastian Pokutta - Conditional Gradients 11/33

Physical Systems via ODEs

CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary differential equation.

(t) = F (x(t)),

where x(f) € R denotes the state of the system at time .

Usually. F: R? — R4 (usually) linear combination of simpler ansatz functions
D ={y; |ie[1,n]}withy; : RT - R:

— & —| [0
(1) = F (x(t)) = ETy(x(t)) = .

7

— & —| gy

where E € R"™ js a typically sparse matrix and (x(t)) = [1(x(¢)), -, zpn(x(t))]T € R™.

Sebastian Pokutta - Conditional Gradients

11/33

Sparse Identification of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al., 2016]

X ox)

TN B

I, Sparse Regression to

s i the Dynamics

Focus on component-wise formulation of sparse recovery problem, and solve a
relaxation of:

m
i v — ET w12 .
i ;nxz Pl + allé;lo,
for each j € [[1,d] for a suitably chosen a > 0.

Note. Earlier approach via Grébner/Border Bases for homogeneous. [Heldt et al., 2009]

Sebastian Pokutta - Conditional Gradients 12 /33

Sparse Identification of Nonlinear Dynamics (SINDy)

CINDy: Recovering Dynamics from Noisy Data

[Brunton et al., 2016]

A-vortex shedding v, - POD mode 1 FullSimulation
"

Characteristics of SINDy.
1. Works on a very wide variety of dynamics
2. Recovers sparse dynamics very well in the noise-free case

3. However when data is noisy, picks up many auxiliary terms to explain noise.

Sebastian Pokutta - Conditional Gradients 13/33

The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

:x0 €P, Sy « {x0}
: fort=0toT—-1do
v «— arg milgl(Vf(xt),v>
Ve

1
2
3
& Sy SiU{n}
5
6

Xt+1 €~ arg minxeconv(SHl)f(x)
: end for

[Holloway, 1974]

Sebastian Pokutta - Conditional Gradients

14 /33

The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

:x0 €P, Sy « {x0}
: fort=0toT—-1do
v «— arg milgl(Vf(xt),v>
Ve

1
2
3
4 S < SV {y}
5
6.

Xt+1 €~ arg minxeconv(SHl)f(x)
: end for

[Holloway, 1974]

Sebastian Pokutta - Conditional Gradients

14 /33

The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

: x0 € P, Sp « {xo0}
: fort=0toT—-1do
v «— arg milgl(Vf(xt),v>
Ve

1
2
3
& S SiU{n}
5
6

Xt+1 < "“‘gmin,\’econﬂs“_l l/[(/\)
: end for

[Holloway, 1974]

Sebastian Pokutta - Conditional Gradients

14 /33

The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

:x0 €P, Sy « {x0}
: fort=0toT—-1do
v «— arg milgl(Vf(xt), v)
Ve

1
2
3
& Sy SiU{n}
5
6

Xi41 < arg minxeconv(SHl)f(x)
: end for

[Holloway, 1974]

Fully-Corrective FW Algorithm

Sebastian Pokutta - Conditional Gradients 14 /33

The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

1: xg € P, Sp «— {x0}

2: fort=0toT—1do

3 v« argmin(Vf(xs), v)

veP

& Sy SiU{n}

5: Xt+] € arg minxeconv(SHl)f(x)

6: end for

[Holloway, 1974]

® Sparsity: FCFW offers much higher sparsity

® Speed: Convergence speed is (much) higher but
iterations very costly

® Projection-free: While still projection-free requires
solver for subproblems

Fully-Corrective FW Algorithm

= While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta - Conditional Gradients

14 /33

Sparsity of different FW variants
CINDy: Recovering Dynamics from Noisy Data

Example. Recovery of a signal x* in ||.||7 norm, i.e., objective ||x — x*||%.

0 -
10 W
—— AFW
— FCFW
— == lower bound
IO" -
102 = .
1 1 1 1 i i 1 1 i
0 25 50 75 100 125 150 175 200
Sparsity of x;

Sebastian Pokutta - Conditional Gradients 15/ 33

CINDy vs SINDy: comparison of the methods

CINDy: Recovering Dynamics from Noisy Data

SINDy.

Solves approximation of

m
min)" [l - £ Y(x)I3 + allE;lo,
£.crd
g]'ER i=1
via Least-Squares Step + Thresholding

CINDy.

Solves
min_[|X-&TW(X)|2
[1Elly,1 <a
Zernxd

via Fully-Corrective Frank-Wolfe (or similar)

Sebastian Pokutta - Conditional Gradients 16 /33

CINDy vs SINDy: comparison of the methods

CINDy: Recovering Dynamics from Noisy Data

SINDy.

Solves approximation of

m
min)" [l - £ Y(x)I3 + allE;lo,
£.cRrd
& €R i=1
via Least-Squares Step + Thresholding

Advantages of CINDy.
1. Better sparsity

2. Better noise tolerance

CINDy.

Solves

min_[|X-&TW(X)|2
[1Elly,1 <a

Zernxd

via Fully-Corrective Frank-Wolfe (or similar)

3. Allows for inclusion of additional constraints (e.g., conversation laws etc)

4. Control of coefficients due to simple ball with some radius a

Sebastian Pokutta - Conditional Gradients 16 / 33

CINDy vs SINDy: a recovery example

CINDy: Recovering Dynamics from Noisy Data

Kuramoto model. d = 10 weakly-coupled identical oscillators. For oscillator i:

d
. K . .
X = w;+ 7 lem (x]- - xi) + hsin (x;)
]:

Error (Log) in recovery Total number of basis functions
SRR 1600 =
\ |- 2250
1550+ @Dy SINDY, - 2000
=1750
_ _ 1500+
3 K [=1500
S =]
3 3 M50+ 1250
5 5 ~1000
1400 =|

=750

1350 500

1300~ e e B 250
6 4 2 6 4 2
Noise (Log) Noise (Log)

Noise (Log)

Number of data points. 3000 generated from 100 experiments (30 per experiment with
additive random noise of 1.073.

Sebastian Pokutta - Conditional Gradients 17 /33

Sample Efficiency: Fermi-Pasta-Ulam-Tsingou model
CINDy: Recovering Dynamics from Noisy Data

m8
I =3
o o
S S
3 6 3
o o
£ £2
3 3
#
4
3 o 3 o
g g 8 g
3 2 D 8 D
Q Q
£ [!
3 g LI}
T % =
0
3 3
S S
8 -2 8 -2
o o
£ £
3 3
#
-4 -4
-8 -6 -4 -2 -8 -6 -4 -2
Noise (logio) Noise (log1o)

Left: differential formulation / Right: integral formulation.

Sebastian Pokutta - Conditional Gradients 18 /33

CINDy vs SINDy: sparsity matters - the most parsimonious model
CINDy: Recovering Dynamics from Noisy Data

Fermi-Pasta-Ulam-Tsingou model.

L sw9 10 SNDy
. .. CINDy
05+ -. True dynamic 0.5 =| = True dynamic
S 2
f‘%' 0.0~ , § 00 P, 3. =
& =
05~ \-/ 05+
-l T -0 T T T T
2 2 q 6 8
Osallator ID Oscillator ID
Kuramoto model.
90"
135° 45
180° 0
225 35
270°

Sebastian Pokutta - Conditional Gradients

19/33

Stochastic Conditional Gradients

—Training Neural Networks with Frank-Wolfe—

joint work with Christoph Spiegel and Max Zimmer

[Pokutta et al., 2020]

Sebastian Pokutta - Conditional Gradients 20/ 33

The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1: myg«—0
2: fort=0toT—-1do
3: uniformly sampleii.d. iy,..., i, ~ [1,m]

& b
VL) — £ X, Va6

4

5. my (1= pg)mp_1 + pt VL(6y)
6: v «— argmingep (m;, v

70 Op1 O +ap(vr — 1)

8: end for

e.g., [Reddi et al., 2016]

Sebastian Pokutta - Conditional Gradients 21/33

The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1. mp <0

2: fort=0toT—-1do

3: uniformly sampleii.d. iy,..., i, ~ [1,m]
& VLO) « £ 2, VE,(6)

5 my < (1 — pg)mi—1 + pr VL(6;)

6: v «— argmingep (m;, v

7: Ory1 — O + at(vt -0

8: end for

e.g., [Reddi et al., 2016]

test set accuracy

—— SFW

—— SVRF
——— ORGFW
— MSFW
0 5 10 15 20 0 M ™M 3M
epochs gradients calculated

Sebastian Pokutta - Conditional Gradients

SFW variants

21/33

The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1: myg«—0
2: fort=0toT—-1do
3: uniformly sampleii.d. iy,..., i, ~ [1,m]

& b
VL) — £ X, Va6

4

5. my (1= pg)mp_1 + pt VL(6y)
6: v «— argmingep (m;, v
7.

8

: 9t+l — Gt + at(vt - Gt)
. end for

—— SFW
~— SVRF

1 —— ORGFW
e.g., [Reddi et al., 2016] —— MSFW
0%
0 5 10 15 20 0 M ™M 3M
epochs gradients calculated

® Convergence rate: In the non-convex stochastic
smooth case O(1/VT)-rate

® Speed: Works well for very large data sets due to
mini-batched gradients

SFW variants

® Projection-free: Remains projection-free and allows
for constraints

Sebastian Pokutta - Conditional Gradients 21/33

Relevance maps under different optimizers / feasible regions

Training Neural Networks with Conditional Gradients

Sebastian Pokutta - Conditional Gradients 22 /33

Robust Rate-Distortion Explanations
via Conditional Gradients

joint work with Mathieu Besangon and Jan Macdonald

[Macdonald et al., 2022]

Sebastian Pokutta - Conditional Gradients 23/33

Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

Expected Distortion of S.

D(S) =D(S5,®,x,V) = Ey.v

(@(x) @(y)ﬁ]

Stability of ® when varying outside of S

Sebastian Pokutta - Conditional Gradients

[Macdonald et al., 2019]

24 /33

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning
[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Sebastian Pokutta - Conditional Gradients 24 /33

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning
[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Sebastian Pokutta - Conditional Gradients 24 /33

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning
[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Sebastian Pokutta - Conditional Gradients 24 /33

Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Rate-Distortion function.)
R(é¢) := min{card(S) : D(S) < ¢} ‘
smallest set of fixings S
U

Sebastian Pokutta - Conditional Gradients 24 /33

Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) cb(y))z]

Stability of @ when varying outside of S

Rate-Distortion function.)
R(é¢) := min{card(S) : D(S) < ¢} ‘
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : [Islly < A}

given budet A find s with lowest distortion aka most relevant pixels

Sebastian Pokutta - Conditional Gradients 24 /33

Rate-Distortion Explanation: the problem formulation

Discrete Optimization in Machine Learning

[Macdonald et al., 2019]

Expected Distortion of S.

D(S) :=D(S,D,x,V) = Ey.v

(cb(x) @(y))z]

Stability of @ when varying outside of S

Rate-Distortion function.)
R(é¢) := min{card(S) : D(S) < ¢} ‘
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : [Islly < A}

given budet A find s with lowest distortion aka most relevant pixels

= Structured optimization problem over ¢;-ball.
Sebastian Pokutta - Conditional Gradients 24 /33

Rate-Distortion Explanation: Examples

Discrete Optimization in Machine Learning

Input PGD 4000 Lagrange 0.05 Lazy AFW 4000

All methods had the same budget for picking relevant pixels. However, sparser solutions of Conditional
Gradients focus weight on most relevant pixels rather than spreading out.

Sebastian Pokutta - Conditional Gradients 25/33

Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain

ordered relevance. [Macdonald et al., 2022]

Sebastian Pokutta - Conditional Gradients 26 /33

Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ¢;-constraint.

Sebastian Pokutta - Conditional Gradients 26 /33

Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain

ordered relevance. [Macdonald et al,, 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ¢;-constraint.

Sebastian Pokutta - Conditional Gradients

26 /33

Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain

ordered relevance. [Macdonald et al,, 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ¢;-constraint.

Sebastian Pokutta - Conditional Gradients

26/33

Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain

ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ¢;-constraint.

Sebastian Pokutta - Conditional Gradients

26/33

Rate-Distortion Explanation: Ordered Relevance

Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain

ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ¢;-constraint.

Sebastian Pokutta - Conditional Gradients

26/33

Rate-Distortion Explanation: Ordered Relevance Test

Discrete Optimization in Machine Learning

08
k!
=1 -
Z 06
g
]
=
Z 04|
=
S
5 02
Z
g
0.0 T
10 D
0.8 |
2 0.6 |
£
2
g 04
0.2 |
0.0 T T T T
0% 20% 40% 60% 80% 100%
rate (non-randomized components)
. FW (MR-RDE) AFW (MR-RDE) s LCG (MR-RDE)
e LAFW (MR-RDE) PGD (L-RDE) sensitivity

Relevance ordering test results for STL-10. An average result over 50 images from the test set (5 images per class)

and 64 noise input samples per image is shown (shaded regions mark + standard deviation).

Sebastian Pokutta - Conditional Gradients 27 /33

FrankWolfe.jl

a high-performance Julia package
for Conditional Gradients

joint work with Mathieu Besancon and Alejandro Carderera

[Besangon et al., 2022]

Sebastian Pokutta - Conditional Gradients 28 /33

Overview and Features
FrankWolfe.jl

In a nutshell.

¢ Implemented in Julia
® Open source under MIT License

® Generic numeric types: reduced (16, 32, 64 bits) and extended (128, GNU MP)
precision, rationals

¢ Memory-saving mode, in-place gradient computations
® Scales well (solved some problems with 1B variables)

® Switch components - bring your own LMO / Vf / step size.
Give it a try.
using Pkg

Pkg.add ("FrankWolfe")

Sebastian Pokutta - Conditional Gradients 29 /33

Example
FrankWolfe.jl

using LinearAlgebra
using FrankWolfe

n = 1000
xp = rand(n)

f(x) = norm(x - xp) 2
function grad! (storage, x)
@. storage = 2 * (x - xp)

return nothing
end

create a L_l-norm ball of radius 2.5
1lmo_radius = 2.5
lmo = FrankWolfe.LpNormLMO{Float64,1} (lmo_radius

x0 = FrankWolfe.compute_extreme_point (1lmo, zeros (n)

x_sol, _ = frank wolfe(f, grad!, 1lmo, x0)

Sebastian Pokutta - Conditional Gradients 30/ 33

Shameless plug...

Thank you!

Conditional Gradient Methods

Gabor Braun, Alejandro Carderera, Cyrille W
Combettes, Hamed Hassani, Amin Karbasi, Aryan
Mokhtari, and Sebastian Pokutta

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103

Conditional Gradient Methods

Gabor Braun Alejandro Carderera Cyrille W. Combettes
Hamed Hassani Amin KarbasiAryan Mokhtari Sebastian Pokuta

Sebastian Pokutta - Conditional Gradients 31/33

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103

References I

F. Bach. On the effectiveness of Richardson extrapolation in machine learning. arXiv preprint 2002.0283503, July 2020.

M. Besangon, A. Carderera, and S. Pokutta. FrankWolfe jl: A high-performance and flexible toolbox for Frank-Wolfe algorithms and conditional gradients.
INFORMS Journal on Computing, 2 2022. URL https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2022.1191. [slides].

G. Braun and S. Pokutta. The matching polytope does not admit fully-polynomial size relaxation schemes. In Proceeedings of SODA, 2015a.

G. Braun and S. Pokutta. The matching polytope does not admit fully-polynomial size relaxation schemes. IEEE Transactions on Information Theory, 61(10):
5754-5764, 2015b. doi: 10.1109/TIT.2015.2465864.

G. Braun, S. Pokutta, and D. Zink. Inapproximability of combinatorial problems via small LPs and SDPs. Proceeedings of STOC, 2015.

G. Braun, C. Guzmén, and S. Pokutta. Unifying Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization. IEEE Transactions of Information
Theory, 63(7):4709-4724, 2017a.

G. Braun, R. Jain, T. Lee, and S. Pokutta. Information-theoretic approximations of the nonnegative rank. Computational Complexity, 26(1):147-197, 2017b.

G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. In Proceedings of the International Conference on Machine Learning (ICML), pages
566-575, 2017c. [slides].

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: The unconditioning of conditional gradients. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, pages 735-743, 2019a. URL
http://proceedings.mlr.press/v97/braunl9a/braunl9a.pdf. [slides].

G. Braun, S. Pokutta, and D. Zink. Lazifying Conditional Gradient Algorithms. Journal of Machine Learning Research (JMLR), 20(71):1-42, 2019b. [slides].

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the
national acadeny of sciences, 113(15):3932-3937, 2016.

A. Carderera,]. Diakonikolas, C. Y. Lin, and S. Pokutta. Parameter-free locally accelerated conditional gradients. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, pages 1283-1293, 2 2021a. [slides].

A. Carderera, S. Pokutta, C. Schiitte, and M. Weiser. CINDy: Conditional gradient-based identification of non-linear dynamics — noise-robust recovery, 1 2021b.
Preprint.

C. W. Combettes and S. Pokutta. Complexity of linear minimization and projection on some sets. Operations Research Letters, 49,7 2021.
C. W. Combettes, C. Spiegel, and S. Pokutta. Projection-Free Adaptive Gradients for Large-Scale Optimization. preprint, 10 2020.

J. Diakonikolas, A. Carderera, and S. Pokutta. Locally Accelerated Conditional Gradients. In S. Chiappa and R. Calandra, editors, Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages 1737-1747, 2020. URL
http://proceedings.mlr.press/v108/diakonikolas20a/diakonikolas20a.pdf. [slides].

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1-2):95-110, 1956.

Sebastian Pokutta - Conditional Gradients 32/33

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2022.1191
http://www.pokutta.com/slides/20210710_FW-simpleSteps-SelfConcordance.pdf
https://app.box.com/s/zsp0hixjz2ha23u1vuyosijjkjdh8kj7
http://proceedings.mlr.press/v97/braun19a/braun19a.pdf
https://app.box.com/s/xbx3z7ws6dxvl3rzgj4jp6forigycooe
https://app.box.com/s/zsp0hixjz2ha23u1vuyosijjkjdh8kj7
http://www.pokutta.com/slides/20210716_PF_LaCG_Poster.pdf
http://proceedings.mlr.press/v108/diakonikolas20a/diakonikolas20a.pdf
https://app.box.com/s/gphkhapso7d1vrfnzqykkb3vx0agxh8w

References II

R. M. Freund, P. Grigas, and R. Mazumder. An extended Frank-Wolfe method with “in-face” directions, and its application to low-rank matrix completion.
SIAM Journal on Optimization, 27(1):319-346, 2017.

D. Garber and E. Hazan. Playing non-linear games with linear oracles. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 420-428.
IEEE, 2013.

D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 1001-1009. Curran
Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-
pdf.

E. Hazan and S. Kale. Projection-free online learning. In Proceedings of the 29th International Conference on Machine Learning, 2012.

E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. In International Conference on Machine Learning, pages 1263-1271, 2016.

D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Approximate computation of zero-dimensional polynomial ideals. Journal of Symbolic Computation, 44:
1566-1591, 2009.

C. A. Holloway. An extension of the Frank and Wolfe method of feasible directions. Mathematical Programming, 6:14-27, Dec. 1974. doi: 10.1007/BF01580219.

M. Jaggi. Revisiting Frank-Wolfe: projection-free sparse convex optimization. In Proceedings of the 30th International Conference on Machine Learning, pages
427-435,2013.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank-Wolfe. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 1275-1283, 2019. URL
http://proceedings.mlr.press/v89/kerdreuxl9a/kerdreuxl9a.pdf. [slides].

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Projection-free optimization on uniformly convex sets. In A. Banerjee and K. Fukumizu, editors, Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 19-27, 1 2021a. [slides].

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Local and Global Uniform Convexity Conditions. preprint, 2 2021b.

S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint arXiv:1607.00345, 2016.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 496-504. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5925-on-the-global-1linear-convergence-of-frank-wolfe-optimization-variants.pdf.

G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM]oumal on Optimization, 26(2):1379-1409, 2016.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR C 1 Math ics and Math al Physics, 6(5):1-50, 1966.

P

J. Macdonald, S. Waldchen, S. Hauch, and G. Kutyniok. A rate-distortion framework for explaining neural network decisions. arXiv preprint arXiv:1905.11092,
2019.

J. Macdonald, M. Besangon, and S. Pokutta. Interpretable neural networks with Frank-Wolfe: Sparse relevance maps and relevance orderings, 5 2022. To
appear in Proceedings of ICML.

S. Pokutta, C. Spiegel, and M. Zimmer. Deep Neural Network Training with Frank-Wolfe. preprint, 10 2020.

S.J. Reddj, S. Sra, B. P6czos, and A. Smola. Stochastic Frank-Wolfe methods for nonconvex optimization. In 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1244-1251. IEEE, 2016.

T. Rothvoss. The matching polytope has exponential extension complexity. In iposium on Theory of Computing, pages 263-272, 2014.

Sebastian Pokutta - Conditional Gradients 33/33

http://papers.nips.cc/paper/6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.pdf
http://papers.nips.cc/paper/6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.pdf
http://papers.nips.cc/paper/6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.pdf
http://proceedings.mlr.press/v89/kerdreux19a/kerdreux19a.pdf
https://app.box.com/s/prd32r6xmuef2k4gah23rd0egllz9rv5
https://app.box.com/s/36wj0o8le96rrfdxec774wk7rrdp2vlm
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf

	Introduction
	Conditional Gradients: the basics
	Fully-Corrective Frank-Wolfe
	Stochastic Frank-Wolfe
	References

	anm1:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

