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Proportional fairness
Suppose we have a resource allocation problem where a single resource
has to be allocated to n agents. One could try and maximize the amount
of the resource allocated, but this could strongly favor some agents in
the detriment of others.

A resource allocation satisfies proportional fairness (also called 1-
fairness) if it maximizes the sum of the log-utilities of each agent: f (x) =
∑

n
i=1 logxi.

Proportional fairness is the only utility function satisfying several nat-
ural fairness axioms (Bertsimas et al. 2011). We are interested
in studying this fairness criterion for the case of positive polyhe-
dra (packing problems), which appear naturally in various resource
allocation problems like network flows. This is a set of the form
P = {x ∈ Rn

≥0 : Ax≤ 1m,A ∈ Rm×n
≥0 }.

Definition Packing proportional fairness and its dual
LetA∈Rm×n

≥0 be a nonnegativematrix. We study the following twoprob-
lems:

1-fair packing : max
x∈Rn

≥0

{ f (x) de f
=

n

∑
i=1

logxi : Ax≤ 1m}. (1)

Dual 1-fair packing : min
λ∈∆n
{g(λ ) de f

=−
n

∑
i=1

log(AT
λ )i−n logn}. (2)

Paper Problem Iterations

Beck, Nedic, Ozdaglar, Teboulle, (2014) Primal O(ρ2mn/ε)

Marašević, Stein, Zussman (2015) Primal Õ(n5/ε5)

Diakonikolas, Fazel, Orecchia (2020) Primal Õ(n2/ε2)

This work Primal Õ(n/ε)

Beck, Nedic, Ozdaglar, Teboulle, (2014) Dual Õ(ρ
√

mn/ε)

This work Dual Õ(n2/ε)

Primal problem: Regularization and coupling
Weoptimize a regularized function for the 0-fair packing problem similar
to the one in (Diakonikolas et al. 2020). First by an exp reparametrization
transforming the constraints into a barrier function:

fr(x)
def
=−∑

i∈[n]
xi+

β

1+β
∑

i∈[m]

(Aexp(x))
1+β

β

i .

Here β depends on n,m,ε . Our algorithm is deterministic & distributed.

Figure 1: The regularized objective fr uses a non-standard barrier function. Here, on the
original space, we plot log( fr) (left) and log(‖∇ fr‖) with normalized gradient arrows
(right).

Theorem 1
Let ε ≤ n/2 and let x̄∗ be the optimum solution of Problem (1). Our
algorithm computes a point y(T ) ∈ B such that fr(y(T ))− fr(x∗r)≤ ε in a
number of iterations T = Õ(n/ε). Besides, x̂ de f

= exp(y(T ))/(1+ ε/n) is
a feasible point of Problem (1), i.e., Ax̂ ≤ 1m, and f (x̄∗)− f (x) ≤ 5ε =
O(ε).

The algorithm uses a non-standard linear coupling (Allen-Zhu et al.,
2014) via gradient truncation. For ∆ s.t. ∆ j = η j min{∇ j f j(x),1} and
small η j, we have 〈∇ fr(x),∆〉 ≥ fr(x)− fr(x−∆)≥ 1

2〈∇ fr(x),∆〉 ≥ 0 and
this strong descent condition is enough to compensate for the regret of
a mirror descent run on truncated gradients in a box B, plus the regret
coming from only using the truncation.

Dual problem: The centroid map and PST

Intuitively, Problem (2) is about finding the simplex minimizing volume
with a fixed corner in the positive orthant that covers P (check our pa-
per for an application to linear programming). We identify the covering
constraints 〈h,x〉 ≤ 1 with the (dual) point h ∈ Rn

≥0.

Definition
� D+ is the set of constraints (i.e., dual points) feasible in all P .
� Centroid map c : Rn

≥0→ Rn
≥0, c(h) =

(
1

nh1
, . . . , 1

nhn

)
.

Figure 2: Left: c maps dual points (i.e., feasible constraints in P) to primal points.
Right: P with the image of D+ under c.
The solution is the unique point in the intersection P ∩ c(D+). This
motivates the study of the following proxy problem:

min
p∈c(D+)

{ĝ(p) de f
= max

i∈[m]
〈Ai, p〉}. (3)

We solve (3) as a linear feasibility problem on c(D+) via a variant of the
Plotkin-Shmoys-Tardos (PST) algorithm with a novel geometric oracle.

Theorem 2
Let ε ∈ (0,n(n− 1)]. Our algorithm finds a linear combination of the
rows of A, λ ∈ ∆m such that ĝ(c(λ TA)) ≤ 1 + ε/n (i.e., an (ε/n)-
approximate solution of Problem 3 ) after Õ(n2/ε) iterations. Further-
more, this same solution is an ε-minimizer solution of Problem 2.

The geometric oracle

Given a covering constraint h = ATλ , for weights λ ∈ ∆m that change
with a MWs algorithm, and given an oracle that finds x ∈ c(D+) s.t.
〈h,x〉 ≤ 1, if we can guarantee the losses for MWs 〈Ai,x〉 − 1 are in
[−τ ,σ ], then PST ensures convergence in O(στ/ε2).
We obtain an improved algorithm by implementing an oracle using δ -
minimizer of ĝ, that has τδ , σδ that decrease with δ . We can find a δ/2-
minimizer in O(τδσδ/(δ/2)2), and repeat until δ < ε/n. Total complex-
ity is O(n2/ε).

Figure 3: If we have a δ -minimizer c(s), the optimum is in the lens Lδ(v), which is
smaller the lower δ is. The oracle uses c(·) of a cvx. combination of s and the query h.


