Fast Algorithms for Packing
Proportional Fairness and its Dual
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Proportional fairness The algorithm uses a non-standard linear coupling (Allen-Zhu et al.,

2014) via gradient truncation. For A sit. A; = n;min{Vf;(x),1} and
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Suppose we have a resource allocation problem where a single resource small 1;, we have (Vf.(x),A) > f,(x) — fi(x —A) > %(Vf,(x),A) >~ 0 and
has to be allocated to n agents. O.ne could try and maximize the amoupt this strong descent condition is enough to compensate for the regret of
of the resource allocated, but this could strongly favor some agents in a mirror descent run on truncated gradients in a box B, plus the regret
the detriment of others. coming from only using the truncation.

A resource allocation satisfies proportional fairness (also called 1-

fairness) if it maximizes the sum of the log-utilities of each agent: f(x) = Dual problem: The centroid map and PST
Y logx;.

Intuitively, Problem (2) is about finding the simplex minimizing volume
with a fixed corner in the positive orthant that covers &2 (check our pa-
per for an application to linear programming). We identify the covering

Proportional fairness is the only utility function satisfying several nat-
ural fairness axioms (Bertsimas et al. 2011). We are interested

in studyir?g this fairness cri.terion for the case .of po?,itive polyhe- constraints (h,x) < 1 with the (dual) point /1 € R%,.
dra (packing problems), which appear naturally in various resource -
allocation problems like network flows. This is a set of the form Definition
P ={xeRL,:Ax <1,,A e RL]"}. » 97 isthe set of constraints (i.e., dual points) feasible in all £2.
Definition Packing proportional fairness and its dual » Centroid map c: ano — Rgo’ C(h) — (nth, AR nLhn)
Let A € RY;" be a nonnegative matrix. We study the following two prob- |
lems: - . A
1-fair packing : max {flx) < Y logx;: Ax < 1,}. (1) DC D
=20 i=1
Dual 1-fair packing : min{g(1) < — Zlog(ATl)i —nlogn}.  (2) o —
AEA” i1

'

Figure 2: Left: ¢ maps dual points (i.e., feasible constraints in &) to primal points.

Paper Problem Iterations Right: &2 with the image of 27 under c.
Beck, Nedic, Ozdaglar, Teboulle, (2014) Primal O(p*mn/¢) The solution is the unique point in the intersection &2 Nc(Z™). This
Maradevi¢, Stein, Zussman (2015) Drima 5(,,5/85) motivates the study of the following proxy problem:
Diakonikolas, Fazel, Orecchia (2020)  Primal O(n?/€?) )

, . ~ in {8(p) < A, p)} (3)
This work Primal  O(n/¢€) pernc(1§+){g(p) Ilgﬁ‘n’](< i»P) -
Beck, Nedic, Ozdaglar, Teboulle, (2014) Dual 5(p, /mn/€) We solve (3) as a linear feasibility problem on ¢(2™") via a variant of the
This work Dual 5(n2/£) Plotkin-Shmoys-Tardos (PST) algorithm with a novel geometric oracle.

Let € € (0,n(n —1)]. Our algorithm finds a linear combination of the

Primal problem: Regularization and coupling rows of A, A € A" such that g(c(A7A)) < 1 +¢&/n (i.e., an (g/n)-
approximate solution of Problem 3 ) after O(n”/¢) iterations. Further-
We optimize a regularized function for the O-fair packing problem similar more, this same solution is an £-minimizer solution of Problem 2.

to the onein (Diakonikolas et al. 2020). First by an exp reparametrization
transforming the constraints into a barrier function:

148 o
£i(x) & — Z]x,- - f ; ;](Aexp(x))iﬁ | The geometric oracle

i€ln

Given a covering constraint & = AT A, for weights A € A™ that change
with a MWs algorithm, and given an oracle that finds x € ¢(Z2™") s.t.
(h,x) < 1, if we can guarantee the losses for MWs (A;,x) — 1 are in
[—17, 0], then PST ensures convergence in O(oT/€g?).

We obtain an improved algorithm by implementing an oracle using 0-
minimizer of g, that has 75, 65 that decrease with 0. We can find a 0 /2-
minimizer in O(t505/(8/2)%), and repeat until 6 < € /n. Total complex-
ity is O(n?/€).

Here 3 depends on n,m, €. Our algorithm is deterministic & distributed.

Figure 1: The regularized objective f, uses a non-standard barrier function. Here, on the
original space, we plot log( f;) (left) and log(||V f;||) with normalized gradient arrows
(right).

Let € < n/2 and let x* be the optimum solution of Problem (1). Our
algorithm computes a point y\7) € B such that f,(y\")) — f.(x*) < e in a
number of iterations T = O(n/¢). Besides, £ = exp(y")) /(1 + €/n) is

: : : A s .
a feasible point of Problem (1), i.e., A% < 1,,, and f(X") — f(x) < 5€ = Figure 3: If we have a 0-minimizer ¢(s), the optimum is in the lens Lg(v), which is
O(e). | smaller the lower 0 is. The oracle uses ¢(-) of a cvx. combination of s and the query A.
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