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Abstract

The vanishing ideal of a set of points - ⊆ ℝ= is
the set of polynomials that evaluate to 0 over all
points x ∈ - and admits an efficient represen-
tation by a finite set of polynomials called gen-
erators. To accommodate the noise in the data
set, we introduce the Conditional Gradients Ap-
proximately Vanishing Ideal algorithm (CGAVI)
for the construction of the set of generators of
the approximately vanishing ideal. The con-
structed set of generators captures polynomial
structures in data and gives rise to a feature
map that can, for example, be used in combina-
tion with a linear classifier for supervised learn-
ing. In CGAVI, we construct the set of generators
by solving specific instances of (constrained)
convex optimization problems with the Pair-
wise Frank-Wolfe algorithm (PFW). Among other
things, the constructed generators inherit the
LASSO generalization bound and not only van-
ish on the training but also on out-sample data.
Moreover, CGAVI admits a compact represen-
tation of the approximately vanishing ideal by
constructing few generators with sparse coeffi-
cient vectors.

Motivation

•Classifier accuracy depends on feature quality
•We study feature transformations for linear

kernel Support Vector Machines (SVMs) [5]
•High accuracy requires linear separability
•⇒ achievable via the vanishing ideal

Noisy data

For ease of exposition, we consider the van-
ishing ideal. In practice, however, data is
noisy, and instead of constructing generators
of the vanishing ideal, we construct genera-
tors of the approximately vanishing ideal.

Vanishing Ideal

Given data set - = {x1, . . . , x<} ⊆ ℝ=,

I- = { 5 ∈ ℝ[G1, . . . , G=] | 5 (x) = 0 ∀x ∈ -},
the vanishing ideal, succinctly characterizes -.
By Hilbert’s basis theorem [1], there exists a fi-
nite number of generators 61, . . . , 6: ∈ I-, with
: ∈ ℕ, such that for any 5 ∈ I-, there exist
ℎ1, . . . , ℎ: ∈ ℝ[G1, . . . , G=] such that

5 =

:∑
8=1

68ℎ8.

Feature transformations with
generators

Setting:

• Input space X ⊆ [−1, 1]=
•Output space Y = [:]
•Training sample
( = {(x1, H1), . . . , (x<, H<)} ∈ (X × Y)< drawn
8.8.3. from some unknown distribution D

Goal:

•Determine a hypothesis ℎ : X → Y with small
generalization error ℙ(x,H)vD [ℎ(x) ≠ H]

Pipeline:

•Let - = {x1, . . . , x<}
•For all 8 ∈ [:], let - 8 ⊆ - denote the set of

feature vectors corresponding to class 8
•For all 8 ∈ [:], construct a set of generators
G8 = {6(8)

9
} |G

8 |
9=1 for the vanishing ideal I- 8

•Transform samples x ∈ - via the feature
transformation

x ↦→ x̃ =

(
. . . , |6(8)1 (x) |, . . . , |6

(8)
|G8 |(x) |, . . .

)ᵀ
• (̃ = {(x̃, H) | (x, H) ∈ (} is linearly separable
•Train a linear kernel SVM on (̃

Open question:

•How to construct the sets of generators G8?

Oracle Approximately Vanishing Ideal algorithm (OAVI)

Algorithm 1 OAVI

Input: - = {x1, . . . , x<} ⊆ ℝ= and k ≥ Y ≥ 0.
Output: G,O ⊆ ℝ[G1, . . . , G=].

1: 3 ← 1
2: O = {C1}f ← {1}f
3: G ← ∅
4: while m3O = {D1, . . . , D:}f ≠ ∅ do
5: for 8 = 1, . . . , : do
6: 6 ← ORACLE(-,O, D8, Y)
7: if MSE(6, -) ≤ k then
8: G ← G ∪ {6}
9: else

10: O ← (O ∪ {D8})f
11: 3 ← 3 + 1

Explanation:

•O: set of non-leading terms of generators
•G: set of generators
• m3O: terms of degree 3 for which OAVI checks

whether they are leading terms of generators
•ORACLE: constructs a polynomial by solving a

constrained convex optimization problem

Properties: When ORACLE is implemented with PFW
[3], OAVI is called CGAVI and

•G contains few and sparse generators
•Generators in G vanish on out-sample data
•CGAVI + linear kernel SVM⇒ margin bound

Numerical Experiments

We compare CGAVI to related methods such as the Approximate Vanishing Ideal algorithm (AVI) [2]
and Vanishing Component Analysis (VCA) [4] as feature transformation techniques for a linear kernel
SVM. We also compare the methods to a polynomial kernel SVM.

Algorithms
Data sets

bank cancer htru2 iris seeds sonar spam voice wine

SP
A

R CGAVI 0.65 0.54 0.53 0.15 0.13 0.82 0.37 0.36 0.51
AVI 0.01 0.03 0.02 0.00 0.05 0.02 0.04 0.06 0.03
VCA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Er
ro

r

CGAVI 0.09 3.42 2.05 4.33 5.95 20.95 5.90 19.80 2.08
AVI 0.00 3.46 2.11 4.00 4.76 26.43 6.64 23.14 3.33
VCA 0.00 5.44 2.15 4.17 5.71 31.90 7.13 29.02 3.06
SVM 0.00 2.72 2.05 3.17 6.79 21.07 7.22 18.43 3.19

Table 1: We compare the sparsity of the feature transformation, SPAR , larger SPAR indicating sparser generators, and
the classification error on the test set in %, Error. The results are averaged over ten random 60%/40% train/test
partitions and the best results in each category are in bold.
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