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Abstract

The vanishing ideal of a set of points X C R" is
the set of polynomials that evaluate to 0 over all
points X € X and admits an efficient represen-
tation by a finite set of polynomials called gen-
erators. To accommodate the noise in the data
set, we introduce the Conditional Gradients Ap-
proximately Vanishing Ideal algorithm (CGAVI)
for the construction of the set of generators of
the approximately vanishing ideal. The con-
structed set of generators captures polynomial
structures in data and gives rise to a feature
map that can, for example, be used in combina-
tion with a linear classifier for supervised learn-
ing. In CGAVI, we construct the set of generators
by solving specific instances of (constrained)
convex optimization problems with the Pair-
wise Frank-Wolfe algorithm (PFW). Among other
things, the constructed generators inherit the
LASSO generalization bound and not only van-
ish on the training but also on out-sample data.
Moreover, CGAVI admits a compact represen-
tation of the approximately vanishing ideal by
constructing few generators with sparse coeffi-
cient vectors.

Motivation

e Classifier accuracy depends on feature quality

Vanishing Ideal

Given data set X = {x1,...,X,,} € R",
Ix = {f € IR[xl,. : .,xn] ‘ f(X) =0Vxe X},

the vanishing ideal, succinctly characterizes X.
By Hilbert’s basis theorem [1], there exists a fi-
nite number of generators g1,...,gr € Ix, with
k € N, such that for any f € 7y, there exist
hi,...,h; € R[Xl, . ,xn] such that

k
J = Z gihi.
i=1

Feature transformations with
generators

Setting:

e Input space X C [-1,1]"
e Qutput space V = [k]

e Training sample

S={(X1,y1),..., X, V) } € (X X Y)" drawn
i.i.d. from some unknown distribution 9

Goal:

e Determine a hypothesis h: X — Y with small
generalization error Pk y)-p[h(X) # ¥]

Pipeline:

olet X = {X1,...,X;}
eFor all i € [k], let X* C X denote the set of
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Oracle Approximately Vanishing Ideal algorithm (0Av1)

Algorithm 1 0AVI

Explanation:
Input: X ={xX1,..., X, CR"andy > & > 0. O set of leadine t " t
Output: G.0 C R[x1.....%,]. e O: set of non-leading terms of generators
Ld e 1 e G: set of generators
) O ={t1}, — {1}, * §,0: terms of degree d for which 0AVI checks
3. G — 0 whether they are leading terms of generators
s while 9,0 = {u1,...,u;}s # 0 do e ORACLE: constructs a polynomial by solving a
5 fori=1,....k do constrained convex optimization problem
o g < ORACLE(X, O, u;, &) Properties: When ORACLE is implemented with PFW
& if MSE(g, X) < ¢ then [3], 0AVI is called CGAVI and
8 G — GU{g} S
0 else e G contains few and sparse generators
10 O — (0OU {u)), e Generators in G vanish on out-sample data

1. de—d+1 ® CGAVI + linear kernel SVM = margin bound

Numerical Experiments

We compare CGAVI to related methods such as the Approximate Vanishing Ideal algorithm (AVI) [2]
and Vanishing Component Analysis (VCA) [4] as feature transformation techniques for a linear kernel
SVM. We also compare the methods to a polynomial kernel SVM.

Algorithms . .Data SELs . :
bank cancer htru2| iris seeds sonar spam/| voice wine
. CGAVI 0.65 0.54 0.53/0.15 0.13 0.82 0.37| 0.36 0.51
< AVI 0.01 0.03 0.02 0.00 0.05 0.02 0.04 0.06 0.03
©IVCA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CGAVI 0.09 3.42| 2.05 4.33 5.95/20.95 5.90 19.80 2.08
‘éAVI 0.00 3.46 2.11 4.00 4.76 26.43 6.64 23.14 3.33
= VCA 0.000 5.44 2.15 4.17 5.71/31.90| 7.13 29.02 3.06
SVM 0.000 2.72 2.05 3.17 6.79 21.07| 7.22/18.43 3.19

e We study feature transformations for linear
kernel Support Vector Machines (SVMs) [5]

e High accuracy requires linear separability

feature vectors corresponding to class i Table 1: We compare the sparsity of the feature transformation, SPAR, larger SPAR indicating sparser generators, and

the classification error on the test set in %, Error. The results are averaged over ten random 60%,/40% train/test

e For all i € [k], construct a set of generators -l . |
partitions and the best results in each category are in bold.

G ={ gﬁ.i) }ﬁ 11| for the vanishing ideal 7y
e Transform samples x € X via the feature
transformation

o (i) (i) !
oS ={(X,y)| (x,y) € S} is linearly separable

e = achievable via the vanishing ideal
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For ease of exposition, we consider the van-
ishing ideal. In practice, however, data is
noisy, and instead of constructing generators
of the vanishing ideal, we construct genera-
tors of the approximately vanishing ideal.

e Train a linear kernel SVM on S

Open question:

e How to construct the sets of generators G'?
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